Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat evolution

The heat of adsorption is an important experimental quantity. The heat evolution with each of successive admissions of adsorbate vapor may be measured directly by means of a calorimeter described by Beebe and co-workers [31]. Alternatively, the heat of immersion in liquid adsorbate of adsorbent having various amounts preadsorbed on it may be determined. The difference between any two values is related to the integral heat of adsorption (see Section X-3A) between the two degrees of coverage. See Refs. 32 and 33 for experimental papers in this area. [Pg.616]

The integral heat of adsorption Qi may be measured calorimetrically by determining directly the heat evolution when the desired amount of adsorbate is admitted to the clean solid surface. Alternatively, it may be more convenient to measure the heat of immersion of the solid in pure liquid adsorbate. Immersion of clean solid gives the integral heat of adsorption at P = Pq, that is, Qi(Po) or qi(Po), whereas immersion of solid previously equilibrated with adsorbate at pressure P gives the difference [qi(Po) differential heat of adsorption q may be obtained from the slope of the Qi-n plot, or by measuring the heat evolved as small increments of adsorbate are added [123]. [Pg.647]

Ozone can be destroyed thermally, by electron impact, by reaction with oxygen atoms, and by reaction with electronically and vibrationaHy excited oxygen molecules (90). Rate constants for these reactions are given ia References 11 and 93. Processes involving ions such as 0/, 0/, 0 , 0 , and 0/ are of minor importance. The reaction O3 + 0( P) — 2 O2, is exothermic and can contribute significantly to heat evolution. Efftcientiy cooled ozone generators with typical short residence times (seconds) can operate near ambient temperature where thermal decomposition is small. [Pg.498]

Ammonium nitrate has a negative heat of solution in water, and can therefore be used to prepare freezing mixtures. Dissolution of ammonium nitrate in anhydrous ammonia, however, is accompanied by heat evolution. In dilute solution the heat of neutralization of nitric acid using ammonia is 51.8 kj/mol (12.4 kcal/mo). [Pg.366]

When a battery produces current, the sites of current production are not uniformly distributed on the electrodes (45). The nonuniform current distribution lowers the expected performance from a battery system, and causes excessive heat evolution and low utilization of active materials. Two types of current distribution, primary and secondary, can be distinguished. The primary distribution is related to the current production based on the geometric surface area of the battery constmction. Secondary current distribution is related to current production sites inside the porous electrode itself. Most practical battery constmctions have nonuniform current distribution across the surface of the electrodes. This primary current distribution is governed by geometric factors such as height (or length) of the electrodes, the distance between the electrodes, the resistance of the anode and cathode stmctures by the resistance of the electrolyte and by the polarization resistance or hinderance of the electrode reaction processes. [Pg.514]

Many of the metal chlorites are not particularly stable and will explode or detonate when stmck or heated. These include the salts of Hg", Tl", Pb ", Cu", and Ag". Extremely fast decomposition with high heat evolution has been noted for barium chlorite [14674-74-9] Ba(Cl02)2, at 190°C, silver chlorite [7783-91-7] AgC102, at 120°C, and lead chlorite [13453-57-17, at 103°C (109). Sodium chlorite can be oxidized by ozone to form chlorine dioxide under acidic conditions (110) ... [Pg.485]

When the partial pressures of the radicals become high, their homogeneous recombination reactions become fast, the heat evolution exceeds heat losses, and the temperature rise accelerates the consumption of any remaining fuel to produce more radicals. Around the maximum temperature, recombination reactions exhaust the radical supply and the heat evolution rate may not compensate for radiation losses. Thus the final approach to thermodynamic equiUbrium by recombination of OH, H, and O, at concentrations still many times the equiUbrium value, is often observed to occur over many milliseconds after the maximum temperature is attained, especially in the products of combustion at relatively low (<2000 K) temperatures. [Pg.516]

Heat evolution is 0.94 to 1.10 kcaJ/(kg oil)(unit drop of IV) (1.69 to 1.98 Btu/[lbm oil][unit drop of IV]). Because space for heat-transfer coils in the vessel is limited, the process is organized to give a maximum IV drop of about 2.0/min. The rate of reaction, of course, drops off rapidly as the reaction proceeds, so a process may take several hours. The end point of a hydrogenation is a specified IV of the prod-... [Pg.2113]

Chemical incompatibility can manifest itself in many ways however, discussions will be limited to those combinations resulting in fires, explosions, extreme heat, evolution of gas (both toxic and nontoxic), and polymerization. [Pg.179]

Heat evolution rate per unit mass of reaetants is eonstant (or average value ean be used). [Pg.970]

The heat evolution rate per unit mass, the vent capacity per unit area, physical properties (e.g.. latent heat of liquid, specific heat, and vapor/liqnid specific volumes) are constant. It allows for total vapor-liqnid disengagement of fluids that are not natural" surface active foamers. ... [Pg.974]

The basic requirements of a reactor are 1) fissionable material in a geometry that inhibits the escape of neutrons, 2) a high likelihood that neutron capture causes fission, 3) control of the neutron production to prevent a runaway reaction, and 4) removal of the heat generated in operation and after shutdown. The inability to completely turnoff the heat evolution when the chain reaction stops is a safety problem that distinguishes a nuclear reactor from a fossil-fuel burning power plant. [Pg.205]

While great public protection is provided by these barriers, accidents can happen. Regardless of the cause of an accident, the core cannot overheat while in contact with liquid water. Furthermore it cannot be critical in the absence of water (because of the low enrichment of the fuel) thus, any accident involves a subcritical core that is heal by decaying radionuclides with inadequate cooling. Figure 8.1-1 shows the rate of heat evolution as a function of time after shutting down a 3,0(K3-MW reactor (Cohen, 1982). Even after an hour, th leat production is about 40 MW. [Pg.310]

The much greater ease of disubstitutionof 2,4-dichloropy-rimidines with hydrazine (20°) than with ammonia (180°) is not a valid indication of less deactivation by the hydrazirvo group in the intermediate since hydrazine is a far better nucleophile than ammonia. This difference is illustrated by the failure to aminate 4-chloropyridazine-3,6-dione with ammonia at 160° overnight while it reacted with hydrazine at 20° in a few minutes (with heat evolution). [Pg.237]

Substituents in the 6-position (cf. 267) show appreciable reactivity. 6-Bromo-as-triazine-3,5(2j, 4j )-dione (316) undergoes 6-substitution with secondary amines or hydrazine, with mercaptide anions or thiourea (78°, 16 hr), with molten ammonium acetate (170°, 24 hr, 53% yield), and with chloride ion during phosphorous oxychloride treatment to form 3,5,6-trichloro-as-triazine. The latter was characterized as the chloro analog of 316 by treatment with methanol (20°, heat evolution) and hydrolysis (neutral or acid) to the dioxo compound. The mercapto substituent in 6-mercapto-as-triazine-3,5(2iI,4if)-dione is displaced by secondary... [Pg.299]

We see that the sign of AH is sensible. It is positive when heat content is rising (by heat absorption) and it is negative when heat content is dropping (by heat evolution). This is shown diagrammatically in Figure 7-1. [Pg.110]

Compare a) the minimum OTR and b) heat evolution rate of a continuous fermentation system based on n-alkanes operating at a dilution rate of 0.2 h 1 and a biomass concentration of 13.5 kg m 3, to a similar system based on carbohydrate. You may need to look back a few pages to get the relevant information concerning carbohydrate utilisation (Section 4.7). [Pg.87]

Heat Evolution Rate (again we have at least two ways to calculate this). [Pg.351]

Sources of thermochemical data for such calculations are Vol 7, H38 Lff Heat Effects — Data for Common Explosives NBS Circular 500 (Ref 39a) Cox Pilcher (Ref 89) and the studies of Rhodes Nelson (Ref 24b) and McKinley Brown (Ref 28a) on mixed acids As an example of such a calculation we will compute the heat evolution and temp rise occurring during the mixed acid nitration of glycerol to NG. We will assume that a typical 50/50 nitric acid/sulfuric acid MA is used and that the MA/glycerol ratio is 5/1. Further assumptions are that all the glycerol is converted to NG, and that the heats of soln of NG in die. spent acid, and of spent acid in the NG, are negligibly small (cf discussion of these effects by the writer in Ref 51). The net reaction is then ... [Pg.255]

The glassy state does not represent a true equilibrium phase. Below the transition into a glass phase, the material is regarded as being in a metastable state. If one holds the substances at temperatures somewhat below the glass transition temperature, heat evolution can often be observed over time as the molecules slowly orient themselves into the lower energy, stable crystalline phase. [Pg.169]

GP 1] [R 1] A kinetic model for the oxidation of ammonia was coupled to a hydro-dynamic description and analysis of heat evolution [98], Via regression analysis and adjustment to experimental data, reaction parameters were derived which allow a quantitative description of reaction rates and selectivity for all products trader equilibrium conditions. The predictions of the model fit experimentally derived data well. [Pg.298]

More particularly, a serious breakthrough was achieved in the methods of electrochemical calorimetty. Initial conclusions as to anomalous heat evolution during the electrolysis of solutions prepared with heavy water were caused by an incorrect formulation of control experiments in light water. In fact, none of the communications confirming anomalous heat evolution have been free of procedural errors, so that one cannot even discuss a sporadic observation of this effect. In contrast to all other experimental manifestations, heat evolution is indicative of any possible nuclear transformation, which implies that in its absence, neither reaction (33.4.1) nor reaction (33.4.2) can be suggested to occur. [Pg.633]


See other pages where Heat evolution is mentioned: [Pg.662]    [Pg.2873]    [Pg.150]    [Pg.263]    [Pg.132]    [Pg.181]    [Pg.342]    [Pg.486]    [Pg.400]    [Pg.217]    [Pg.210]    [Pg.879]    [Pg.506]    [Pg.193]    [Pg.253]    [Pg.370]    [Pg.977]    [Pg.79]    [Pg.79]    [Pg.94]    [Pg.350]    [Pg.351]    [Pg.329]    [Pg.69]    [Pg.233]    [Pg.584]    [Pg.936]    [Pg.235]    [Pg.241]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.427 ]

See also in sourсe #XX -- [ Pg.214 , Pg.228 , Pg.236 , Pg.394 ]

See also in sourсe #XX -- [ Pg.424 , Pg.428 , Pg.443 , Pg.445 ]




SEARCH



© 2024 chempedia.info