Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction rates pressure

The kinetic model predicted the observed reaction rates, pressures, rates of pressure rise and temperature rise within order-of-magnitude accuracies. The accuracy of the kinetic model was better for the large-scale tests. [Pg.339]

Period and Reaction Rate Pressure. Reaction Rate and Reaction Time. [Pg.36]

Ignition is dependent on various physicochemical parameters, such as the type of reactants, reaction rate, pressure, the heat transfer process from the external heat source to the reactants, and the size or mass of the reactants. The rate of heat production is dependent on the heats of formation of the reactants and products, the temperature, and the activation energy. As the process of ignition includes an external heating and an exothermic reaction of the reactants, there is a non-steady heat balance during these phases. [Pg.53]

The value of a is not known, and is assumed equal to 1. This appears reasonable for a film-free surface and for a low reaction rate (pressures of the order of 1 X 10-6 mm. of mercury). It is also assumed in this formula that the mean free path is large compared to the dimensions of the vessel and that the area of the specimen is small compared to that of the walls of the furnace tube. [Pg.144]

Another important parameter influencing the course of polymerization is the pressure. A moderate increase of pressure shows no apparent effect on the polymerization reaction rate. Pressures above 100 MPa increase the rate constant of chain growth and by the same the speed of polymerization reaction. The increase of pressure results also in the increase of average molecular weight of the formed polymer and improves the regularity of its spatial structure. [Pg.272]

The effective rate law correctly describes the pressure dependence of unimolecular reaction rates at least qualitatively. This is illustrated in figure A3,4,9. In the lunit of high pressures, i.e. large [M], becomes independent of [M] yielding the high-pressure rate constant of an effective first-order rate law. At very low pressures, product fonnation becomes much faster than deactivation. A j now depends linearly on [M]. This corresponds to an effective second-order rate law with the pseudo first-order rate constant Aq ... [Pg.788]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

In the thennodynamic fomiiilation of TST the pressure dependence of the reaction rate coefficient defines a volume of activation [24, 25 and 26]... [Pg.840]

There is one important caveat to consider before one starts to interpret activation volumes in temis of changes of structure and solvation during the reaction the pressure dependence of the rate coefficient may also be caused by transport or dynamic effects, as solvent viscosity, diffiision coefficients and relaxation times may also change with pressure [2]. Examples will be given in subsequent sections. [Pg.841]

Instead of concentrating on the diffiisioii limit of reaction rates in liquid solution, it can be histnictive to consider die dependence of bimolecular rate coefficients of elementary chemical reactions on pressure over a wide solvent density range covering gas and liquid phase alike. Particularly amenable to such studies are atom recombination reactions whose rate coefficients can be easily hivestigated over a wide range of physical conditions from the dilute-gas phase to compressed liquid solution [3, 4]. [Pg.845]

For very fast reactions, as they are accessible to investigation by pico- and femtosecond laser spectroscopy, the separation of time scales into slow motion along the reaction path and fast relaxation of other degrees of freedom in most cases is no longer possible and it is necessary to consider dynamical models, which are not the topic of this section. But often the temperature, solvent or pressure dependence of reaction rate... [Pg.851]

Because of the general difficulty encountered in generating reliable potentials energy surfaces and estimating reasonable friction kernels, it still remains an open question whether by analysis of experimental rate constants one can decide whether non-Markovian bath effects or other influences cause a particular solvent or pressure dependence of reaction rate coefficients in condensed phase. From that point of view, a purely... [Pg.852]

Miller W H 1988 Effect of fluctuations in state-specific unimolecular rate constants on the pressure dependence of the average unimolecular reaction rated. Phys. Chem. 92 4261-3... [Pg.1043]

The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

In practical applications, gas-surface etching reactions are carried out in plasma reactors over the approximate pressure range 10 -1 Torr, and deposition reactions are carried out by molecular beam epitaxy (MBE) in ultrahigh vacuum (UHV below 10 Torr) or by chemical vapour deposition (CVD) in the approximate range 10 -10 Torr. These applied processes can be quite complex, and key individual reaction rate constants are needed as input for modelling and simulation studies—and ultimately for optimization—of the overall processes. [Pg.2926]

There is a further simplification which is often justifiable, but not by consideration of the flux equations above. The nature of many problems is such that, when the permeability becomes large, pressure gradients become very small ialuci uidiii iiux.es oecoming very large. in catalyst pellets, tor example, reaction rates limit Che attainable values of the fluxes, and it then follows from equation (5,19) that grad p - 0 as . But then the... [Pg.40]

The reaction mechanism and rates of methyl acetate carbonylation are not fully understood. In the nickel-cataly2ed reaction, rate constants for formation of methyl acetate from methanol, formation of dimethyl ether, and carbonylation of dimethyl ether have been reported, as well as their sensitivity to partial pressure of the reactants (32). For the rhodium chloride [10049-07-7] cataly2ed reaction, methyl acetate carbonylation is considered to go through formation of ethyUdene diacetate (33) ... [Pg.77]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

The gasification is performed usiag oxygen and steam (qv), usually at elevated pressures. The steam—oxygen ratio along with reaction temperature and pressure determine the equiUbrium gas composition. The reaction rates for these reactions are relatively slow and heats of formation are negative. Catalysts maybe necessary for complete reaction (2,3,24,42,43). [Pg.65]

A reactor system is shown in Figure 2 to which the HAZOP procedure can be appHed. This reaction is exothermic, and a cooling system is provided to remove the excess energy of reaction. If the cooling flow is intermpted, the reactor temperature increases, leading to an increase in the reaction rate and the heat generation rate. The result could be a mnaway reaction with a subsequent increase in the vessel pressure possibly leading to a mpture of the vessel. [Pg.471]


See other pages where Reaction rates pressure is mentioned: [Pg.91]    [Pg.198]    [Pg.315]    [Pg.38]    [Pg.44]    [Pg.91]    [Pg.198]    [Pg.315]    [Pg.38]    [Pg.44]    [Pg.45]    [Pg.47]    [Pg.263]    [Pg.129]    [Pg.830]    [Pg.831]    [Pg.840]    [Pg.843]    [Pg.848]    [Pg.848]    [Pg.856]    [Pg.858]    [Pg.1099]    [Pg.1868]    [Pg.1917]    [Pg.2123]    [Pg.2696]    [Pg.121]    [Pg.124]    [Pg.262]    [Pg.6]    [Pg.35]    [Pg.187]    [Pg.276]    [Pg.445]   
See also in sourсe #XX -- [ Pg.598 ]




SEARCH



Chemical reaction rates pressure-jump method

External Pressure and Solvent Effects on Reaction Rates

High-pressure chemical reactions reaction rates

Pressure conditions reaction rates

Pressure dependence of reaction rate

Pressure effect on reaction rate

Pressure rated

Pressure reaction rate expressions

Rates, chemical reactions constant pressure

Reaction rate constants pressure effect

Reaction rate partial pressure

Reaction rate pressure changes

Reaction rate pressure dependence

Reaction rate pressure effect

Termolecular Reactions and Pressure Dependence of Rate Constants

Total Pressure Method of Reaction-Rate Data Analysis

© 2024 chempedia.info