Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation time in NMR

Bain A D and Duns G J 1994 Simultaneous determination of spin-lattioe (T1) and spin-spin (T2) relaxation times in NMR a robust and faoile method for measuring T2. Optimization and data analysis of the offset-saturation experiment J. Magn. Reson. A 109 56-64... [Pg.2113]

Although the idea of generating 2D correlation spectra was introduced several decades ago in the field of NMR [1008], extension to other areas of spectroscopy has been slow. This is essentially on account of the time-scale. Characteristic times associated with typical molecular vibrations probed by IR are of the order of picoseconds, which is many orders of magnitude shorter than the relaxation times in NMR. Consequently, the standard approach used successfully in 2D NMR, i.e. multiple-pulse excitations of a system, followed by detection and subsequent double Fourier transformation of a series of free-induction decay signals [1009], is not readily applicable to conventional IR experiments. A very different experimental approach is therefore required. The approach for generation of 2D IR spectra defined by two independent wavenumbers is based on the detection of various relaxation processes, which are much slower than vibrational relaxations but are closely associated with molecular-scale phenomena. These slower relaxation processes can be studied with a conventional... [Pg.561]

Relaxation speetrum 7,18, 484, 485, 513, 518, 993 see also Gross frequeney relaxation funetion Relaxation time in annealing 980, 981, 990, 993,1365 Relaxation time in NMR 137,188... [Pg.1433]

We can see from Table 2.3 that relaxation times in NMR experiments can be relatively long, typically between 1 ms and 20 s, so line broadening is very much less than in most other spectra. However, even this degree of line broadening can cause problems, because the range of energies covered in an NMR spectrum is very small. This is particularly true when relaxation times are much less than a second, as they can be when quadmpolar nuclei are involved (Section 4.7.5). In such cases, lines could be so broad that they cannot readily be detected at all. [Pg.25]

Yes - Possibility that a space-average disorder (detected by NMR) is accompanied by a time-average increase in viscosity (detected by EPR). The relaxation times in NMR are several orders of magnitude slower than in EPR. [Pg.170]

Relaxation effects in Mossbauer spectroscopy are of a different nature from those in NMR. The term relaxation effects or relaxation spectra in nuclear gamma resonance spectroscopy refers to averaging effects that occur in the hyperfine spectrum when the hyperfine interactions fluctuate at a rate more rapid than the nuclear frequency characteristic of the hyperfine interaction itself. This situation is a consequence of the rapid relaxation of the host ion among its energy levels, and the relaxation time for such effects is characteristic of the ion and not of the nuclear spins. The relaxation processes involved also affect electron spin resonance spectra, and their discussion is best considered in that context (see sections 3.3. and 3.4.). In the following subsections the principal interactions which contribute to the nuclear spin relaxation times in NMR experiments are briefly considered, and the connections between these and the parameters characterizing the steady-state spectrum are outlined. [Pg.413]

Different solid-state NMR techniques CPMAS NMR, the second moment of the signal, the spin-lattice relaxation time in the rotating frame T p) were combined to reach the conclusion that in the case of por-phine H2P the double-proton transfer is followed by a 90° rotation within the crystal (see Scheme 2). [Pg.23]

NMR signals are highly sensitive to the unusual behavior of pore fluids because of the characteristic effect of pore confinement on surface adsorption and molecular motion. Increased surface adsorption leads to modifications of the spin-lattice (T,) and spin-spin (T2) relaxation times, enhances NMR signal intensities and produces distinct chemical shifts for gaseous versus adsorbed phases [17-22]. Changes in molecular motions due to molecular collision frequencies and altered adsorbate residence times again modify the relaxation times [26], and also result in a time-dependence of the NMR measured molecular diffusion coefficient [26-27]. [Pg.306]

Figure 1 Schematic representation of the 13C (or 15N) spin-lattice relaxation times (7"i), spin-spin relaxation (T2), and H spin-lattice relaxation time in the rotating frame (Tlp) for the liquid-like and solid-like domains, as a function of the correlation times of local motions. 13C (or 15N) NMR signals from the solid-like domains undergoing incoherent fluctuation motions with the correlation times of 10 4-10 5 s (indicated by the grey colour) could be lost due to failure of attempted peak-narrowing due to interference of frequency with proton decoupling or magic angle spinning. Figure 1 Schematic representation of the 13C (or 15N) spin-lattice relaxation times (7"i), spin-spin relaxation (T2), and H spin-lattice relaxation time in the rotating frame (Tlp) for the liquid-like and solid-like domains, as a function of the correlation times of local motions. 13C (or 15N) NMR signals from the solid-like domains undergoing incoherent fluctuation motions with the correlation times of 10 4-10 5 s (indicated by the grey colour) could be lost due to failure of attempted peak-narrowing due to interference of frequency with proton decoupling or magic angle spinning.
Recently, Lipton et al. [25] have used zinc-67 NMR to investigate [Zn(HB(3,5-(CH3)2pz)3)2] complexes which have been doped with traces of paramagnetic [Fe(HB(3,4,5-(CH3)3pz)3)2]. The low-temperature Boltzmann enhanced cross polarization between XH and 67Zn has shown that the paramagnetic iron(II) dopant reduces the proton spin-lattice relaxation time, Tj, of the zinc complexes without changing the proton spin-lattice relaxation time in the Tip rotating time frame. This approach and the resulting structural information has proven very useful in the study of various four-coordinate and six-coordinate zinc(II) poly(pyrazolyl)borate complexes that are useful as enzymatic models. [Pg.108]

Relaxation is an inherent property of all nuclear spins. There are two predominant types of relaxation processes in NMR of liquids. These relaxation processes are denoted by the longitudinal (Ti) and transverse (T2) relaxation time constants. When a sample is excited from its thermal equihbrium with an RF pulse, its tendency is to relax back to its Boltzmann distribution. The amount of time to re-equilibrate is typically on the order of seconds to minutes. T, and T2 relaxation processes operate simultaneously. The recovery of magnetization to the equilibrium state along the z-axis is longitudinal or the 7 relaxation time. The loss of coherence of the ensemble of excited spins (uniform distribution) in the x-, y-plane following the completion of a pulse is transverse or T2... [Pg.281]

Carbon-13 NMR was utilized to study different aspects of the reactivity of the metal complexes as a function of certain structural features in the selected oxocyano complexes of Mo(IV), W(IV), Tc(V), Re(V), and Os(VI) as depicted in Scheme 1 and illustrated in Figs. 1-4. The NMR spectral properties were similar to those obtained from 13C NMR in general, i.e., very sharp lines indicative of fairly long relaxation times in the order of a few seconds. The large quadrupolar moment ofTc-99 (7 = 9/2, 100% abundance) led to a very broad bound 13C signal (Fig. 5), thus excluding the quantitative study of the cyanide exchange by 13C NMR. However, 16N NMR was successfully used instead. [Pg.65]

The main NMR interactions in solution of interest to chemists are the chemical shift relative to some stated standard (6), the indirect coupling constant (7) and the relaxation times T1 (spin-lattice) T2 (spin-spin related to the line width) and T p, the relaxation time in the rotating frame. In the case of solids and oriented samples both the direct dipole-dipole and the electric quadrupole interactions assume greater importance. We shall confine our attention in this chapter to diamagnetic compounds so that we may neglect nuclear interactions with electron spins. [Pg.296]

For PIB the apparent activation energy found for the structural relaxation time in the NSE window is almost twice that determined by NMR [136] (see Fig. 4.9 [125]). For aPP, the temperature dependence of NMR results [138] seems, however, to be quite compatible with that of the NSE data nevertheless, 2D exchange NMR studies on this polymer [139] reveal a steeper dependence. This can be seen in Fig. 4.11 [ 126]. [Pg.80]

The most important relaxation processes in NMR involve interactions with other nuclear spins that are in the state of random thermal motion. This is called spin-lattice relaxation and results in a simple exponential recovery process after the spins are disturbed in an NMR experiment. The exponential recovery is characterised by a time constant Tj that can be measured for different types of nuclei. For organic liquids and samples in solution, Tj is typically of the order of several seconds. In the presence of paramagnetic impurities or in very viscous solvents, relaxation of the spins can be very efficient and NMR spectra obtained become broad. [Pg.36]

Temperature-dependent lineshape changes were observed in an early study of the fluo-renyllithium(TMEDA) complex. A detailed study by lineshape analysis, which was also applied to the TMEDA complex of 2,3-benzofluorenyllithium(TMEDA) (Figure 29f, yielded barriers AG (298) of 44.4 and 41.9 kJmoD for the 180° ring flip in these systems, respectively . A second dynamic process, which was detected via the temperature dependence of, the spin-lattice relaxation time in the rotating frame, is characterized by barriers of 35.1 and 37.6 kJmoD, respectively, and may be ascribed to the ring inversion process. For the fluorenyl complex, a barrier AG (298) of 15.9 kJmoD for the methyl rotation in the TMEDA hgand was determined from temperature-dependent NMR spectra of the deuteriated system. [Pg.191]

A commonly used method of measuring longitudinal relaxation times in multiline spectra, almost as old as Fourier transform NMR, is the inversion recovery experiment [1] which can be schematized by the pulse sequence... [Pg.319]

The ratio of the values for the NMR relaxation times in water and at the silica surface are in good agreement with that observed experimentally. Effects due to ionic strength are minor. For kaolinite there is no published experimental data for comparison due to problems with uneven coagulation. However, predicted values for kaolinite are of the same order as for silica. [Pg.101]

As an NMR methodology for elucidating miscibility in the PLA/PLV, PLA/PLIL, PDA/PLV and PG/PLV blends, the proton spin-lattice relaxation times in the rotating frame ) for homopolypeptides and their... [Pg.27]

Molecular motions in low molecular weight molecules are rather complex, involving different types of motion such as rotational diffusion (isotropic or anisotropic torsional oscillations or reorientations), translational diffusion and random Brownian motion. The basic NMR theory concerning relaxation phenomena (spin-spin and spin-lattice relaxation times) and molecular dynamics, was derived assuming Brownian motion by Bloembergen, Purcell and Pound (BPP theory) 46). This theory was later modified by Solomon 46) and Kubo and Tomita48 an additional theory for spin-lattice relaxation times in the rotating frame was also developed 49>. [Pg.18]


See other pages where Relaxation time in NMR is mentioned: [Pg.868]    [Pg.1004]    [Pg.1116]    [Pg.413]    [Pg.868]    [Pg.1004]    [Pg.1116]    [Pg.413]    [Pg.404]    [Pg.371]    [Pg.132]    [Pg.127]    [Pg.121]    [Pg.5]    [Pg.48]    [Pg.354]    [Pg.205]    [Pg.217]    [Pg.119]    [Pg.176]    [Pg.361]    [Pg.105]    [Pg.4]    [Pg.327]    [Pg.302]    [Pg.29]    [Pg.93]    [Pg.302]    [Pg.139]    [Pg.66]   
See also in sourсe #XX -- [ Pg.587 ]




SEARCH



NMR relaxation

© 2024 chempedia.info