Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process development compounds

A process development known as NOXSO (DuPont) (165,166) uses sodium to purify power plant combustion flue gas for removal of nitrogen oxide, NO, and sulfur, SO compounds. This technology reHes on sodium metal generated in situ via thermal reduction of sodium compound-coated media contained within a flue-gas purification device, and subsequent flue-gas component reactions with sodium. The process also includes downstream separation and regeneration of spent media for recoating and circulation back to the gas purification device. A full-scale commercial demonstration project was under constmction in 1995. [Pg.169]

Other. Numerous other supercritical fluid processes and techniques have been and are continuing to be developed. The novel spray appHcation UNICARB uses supercritical CO2 to replace volatile diluents in coating formulations, thereby reducing the volatile organic compound emissions by up to 80% (128). Rapid expansion of CO2 iu the spray can also improve the quaUty of coatings, thus performance benefits are obtained in a process developed for environmental advantages. [Pg.229]

Most commercial tellurium is recovered from electrolytic copper refinery slimes (8—16). The tellurium content of slimes can range from a trace up to 10% (see Seleniumand selenium compounds). Most of the original processes developed for the recovery of metals of value from slimes resulted in tellurium being the last and least important metal produced. In recent years, many refineries have changed their slimes treatment processes for faster recovery of precious metals (17,18). The new processes have in common the need to remove the copper in slimes by autoclave leaching to low levels (<1%). In addition, this autoclave pretreatment dissolves a large amount of the tellurium, and the separation of the tellurium and copper from the solution which then follows places tellurium recovery at the beginning of the slimes treatment process. [Pg.385]

G in the presence of a catalytic amount of a Lewis base such as dimethylether, (GH2)20. In addition to the gas-phase pyrolysis of diborane, can be prepared by a solution-phase process developed at Union Garbide Gorp. Decaborane is a key intermediate in the preparation of many carboranes and metaHa derivatives. As of this writing, this important compound is not manufactured on a large scale in the western world and is in short supply. Prices for decaborane in 1991 were up to 10,000/kg. [Pg.235]

More recendy, the molten caustic leaching (MCL) process developed by TRW, Inc. has received attention (28,31,32). This process is illustrated in Eigure 6. A coal is fed to a rotary kiln to convert both the mineral matter and the sulfur into water- or acid-soluble compounds. The coal cake discharged from the kiln is washed first with water and then with dilute sulfuric acid solution countercurrendy. The efduent is treated with lime to precipitate out calcium sulfate, iron hydroxide, and sodium—iron hydroxy sulfate. The MCL process can typically produce ultraclean coal having 0.4 to 0.7% sulfur, 0.1 to 0.65% ash, and 25.5 to 14.8 MJ/kg (6100—3500 kcal/kg) from a high sulfur, ie, 4 wt % sulfur and ca 11 wt % ash, coal. The moisture content of the product coal varies from 10 to 50%. [Pg.257]

The third process for cross-linking is the Sioplas process developed by Dow. The first stage of this involves the grafting of an easily hydrolysable trialkoxyvinylsilane onto the polyethylene chain, the site activation having been achieved with the aid of a small amount of peroxide. The compound is then extruded onto the wire, which is collected on a drum. The drum is then exposed to hot water, or, more commonly, low-pressure steam. The water hydrolyses the alkoxy groups, which then condense to form a siloxane cross-link. ... [Pg.239]

Although desulfurization is a process, which has been in use in the oil industry for many years, renewed research has recently been started, aimed at improving the efficiency of the process. Envii onmental pressure and legislation to further reduce Sulfur levels in the various fuels has forced process development to place an increased emphasis on hydrodesulfurization (HDS). For a clear comprehension of the process kinetics involved in HDS, a detailed analyses of all the organosulfur compounds clarifying the desulfurization chemistry is a prerequisite. The reactivities of the Sulfur-containing structures present in middle distillates decrease sharply in the sequence thiols sulfides thiophenes benzothiophenes dibenzothio-phenes (32). However, in addition, within the various families the reactivities of the Substituted species are different. [Pg.396]

A new process developed by Institut Francais du Petrole produces butene-1 (1-butene) by dimerizing ethylene.A homogeneous catalyst system based on a titanium complex is used. The reaction is a concerted coupling of two molecules on a titanium atom, affording a titanium (IV) cyclic compound, which then decomposes to butene-1 by an intramolecular (3-hydrogen transfer reaction. ... [Pg.209]

The process illustrated in Figure 4.6 was developed to production scale with a capacity of 200,000 tonnes per year. This process, developed by British Petroleum, was one of several in Europe and Japan that, although fully developed, was never operated substrate commercially. This was due to sharply increased substrate costs in 1973 and political costs and social pressures against the use of petroleum-based substrates (possibly contaminated with carcinogenic or toxic compounds). Such systems do operate in the former USSR, producing Candida guilliermondii as feed. [Pg.87]

A three-year joint European project, RECAM, recommends that it should be possible to colleet more than 50% of carpet waste in Western Europe. High-grade materials such as PA and PP could be recovered for the manufacture of engineering plastics compounds and more than 8 million Gigajoules of energy could be reeovered from the remainder. At the heart of the proj ect are ehemieal recycling processes developed by both DSM and Enichem. [Pg.54]

The advantages of such biotransformation processes are (1) the relatively high yields which can be achieved with specific enzymes, (2) the formation of chiral compounds suitable for biopharmaceuticals, and (3) the relatively mild reaction conditions. Key issues in industrial-scale process development are achieving high product concentrations, yields and productivities by maintaining enzyme activity and stability under reaction conditions while reducing enzyme production costs. [Pg.24]

In addition to the challenges cited above, there are some special issues associated with steroid chemistry that should be noted. The steroidal impurities formed in the process are generally similar in structure to the desired product and, in some cases, co-crystallization with the product is a problem. It is, therefore, critical to limit the formation of steroidal impurities in the reactions. The structural similarity between product and impurities also creates challenges in developing assays for reaction monitoring and purity determination. Furthermore, the poor solubility of these compounds in the solvents typically used in a manufacturing process makes it very difficult to achieve practical volume productivity in process development. [Pg.80]

To support preparation of multiple kilograms of compound 1 and develop a route that is potentially suitable for long term needs to supply much larger amounts, a few goals were set for the process development of 1 after analyzing the synthetic... [Pg.145]

In Section 7.1, process development for compound 1 is described in detail. In Section 7.2, further discussion of the key chemical transformations from this project will be addressed. [Pg.192]

ChemOvation Ltd., founded in 1998, focuses on providing an integrated drug discovery support service via collaborative programs, and the manufacture of innovative compound libraries. Apart from that, their range of services includes chemistry development, automated parallel synthesis, scale-up, process development, and screening. [Pg.262]


See other pages where Process development compounds is mentioned: [Pg.602]    [Pg.163]    [Pg.178]    [Pg.15]    [Pg.89]    [Pg.507]    [Pg.223]    [Pg.448]    [Pg.468]    [Pg.1553]    [Pg.2057]    [Pg.2133]    [Pg.17]    [Pg.33]    [Pg.158]    [Pg.693]    [Pg.89]    [Pg.107]    [Pg.274]    [Pg.20]    [Pg.92]    [Pg.75]    [Pg.876]    [Pg.64]    [Pg.626]    [Pg.264]    [Pg.107]    [Pg.270]    [Pg.1]    [Pg.348]    [Pg.64]    [Pg.20]    [Pg.12]    [Pg.199]    [Pg.125]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Compound development

Compound processing

Compounding process

© 2024 chempedia.info