Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene copolymer with acrylonitrile

Prolongation of polystyrene dicarbanion with acrylonitrile was recently demonstrated by extracting unreacted polystyrene with chloroform, block copolymers were obtained their molar acrylonitrile content ranged from 35 up to 77% depending on the reaction conditions (65). [Pg.206]

The potential problem of styrene taint in foods is well known and documented in the literature (Saxby 1996). Styrene (see Chapter 2) is the monomer that is polymerized to make polystyrene (PS) (also known as general purpose or GPPS grade). It is also commonly used with butadiene rubber (5-20 % w/w) as a block copolymer to form high impact polystyrene (HIPS). In addition there are less common copolymer grades such as acrylonitrile-butadiene-styrene (ABS) having a mixture of 25 %, 15-25 % and 50-65 % of each monomer respectively or a copolymer with acrylonitrile (styrene-acrylonitrile, SAN). [Pg.427]

The benzene-derived petrochemicals in Figure 4.15 are intermediate feedstocks for styrenic and phenolic plastics. In the styrenics chain, ethylbenzene is dehydrogenated to styrene, to be used as polystyrene monomer or as a copolymer with acrylonitrile and butadiene. In the phenolics chain, cumene is an intermediate for making phenol. Bisphenol A is the condensation product of two moles of phenol and acetone. Phenol and Bisphenol A are used to manufacture resins and polycarbonates. Phenol and cyclohexane are the starting materials for the manufacture of nylon 6. [Pg.93]

HIPS) is produced commercially by the emulsion polymerization of styrene monomer containing dispersed particles of polybutadiene or styrene-butadiene (SBR) latex. The resulting product consists of a glassy polystyrene matrix in which small domains of polybutadiene are dispersed. The impact strength of HIPS depends on the size, concentration, and distribution of the polybutadiene particles. It is influenced by the stereochemistry of polybutadiene, with low vinyl contents and 36% d5-l,4-polybutadiene providing optimal properties. Copolymers of styrene and maleic anhydride exhibit improved heat distortion temperature, while its copolymer with acrylonitrile, SAN — typically 76% styrene, 24% acrylonitrile — shows enhanced strength and chemical resistance. The improvement in the properties of polystyrene in the form of acrylonitrile-butadiene-styrene terpolymer (ABS) is discussed in Section VILA. [Pg.431]

Free-radical suspension polymerization, originally developed by Hoffman and Delbruch in 1909 [1] is commonly employed for producing a wide variety of commercially important polymers such as poly(vinyl chloride) (PVC), polystyrene (PS), expandable polystyrene (EPS), high-impact polystyrene (HIPS) and various styrene copolymers with acrylonitrile (SAN) and acrylonitrile-polybutadiene (ABS), poly(methyl methacrylate) (PMMA), poly(vinyl acetate) (PVAc), etc. [2],... [Pg.209]

Polystyrene, expandable polystyrene (containing a volatile C4-C6 hydrocarbon), high impact polystyrene, styrene copolymers with acrylonitrile (SAN) and ABS, and poly(methyl methacrylate) are the main products of the suspeusion bead polymerization. PVC is the main polymeric material produced by suspension powder polymerization. [Pg.70]

Another polyolefin of interest is polystyrene, a clear, brittle plastic that, by itself, is rarely used in composites. However, several copolymers and alloys of polystyrene with acrylonitrile or butadiene have been used with fiber glass or glass spheres to form composites (7). [Pg.36]

Copolymers of acrylonitrile and vinylidene chloride have been used for many years to produce films of low gas permeability, often as a coating on another material. Styrene-acrylonitrile with styrene as the predominant free monomer (SAN polymers) has also been available for a long time. In the 1970s materials were produced which aimed to provide a compromise between the very low gas permeability of poly(vinylidene chloride) and poly(acrylonitrile) with the processability of polystyrene or SAN polymers (discussed more fully in Chapter 16). These became known as nitrile resins. [Pg.416]

II. B polyethylene glycol, ethylene oxide, polystyrene, diisocyanates (urethanes), polyvinylchloride, chloroprene, THF, diglycolide, dilac-tide, <5-valerolactone, substituted e-caprolactones, 4-vinyl anisole, styrene, methyl methacrylate, and vinyl acetate. In addition to these species, many copolymers have been prepared from oligomers of PCL. In particular, a variety of polyester-urethanes have been synthesized from hydroxy-terminated PCL, some of which have achieved commercial status (9). Graft copolymers with acrylic acid, acrylonitrile, and styrene have been prepared using PCL as the backbone polymer (60). [Pg.84]

The isoprene units in the copolymer impart the ability to crosslink the product. Polystyrene is far too rigid to be used as an elastomer but styrene copolymers with 1,3-butadiene (SBR rubber) are quite flexible and rubbery. Polyethylene is a crystalline plastic while ethylene-propylene copolymers and terpolymers of ethylene, propylene and diene (e.g., dicyclopentadiene, hexa-1,4-diene, 2-ethylidenenorborn-5-ene) are elastomers (EPR and EPDM rubbers). Nitrile or NBR rubber is a copolymer of acrylonitrile and 1,3-butadiene. Vinylidene fluoride-chlorotrifluoroethylene and olefin-acrylic ester copolymers and 1,3-butadiene-styrene-vinyl pyridine terpolymer are examples of specialty elastomers. [Pg.20]

Copolymerization allows the synthesis of an almost unlimited number of different products by variations in the nature and relative amounts of the two monomer units in the copolymer product. A prime example of the versatility of the copolymerization process is the case of polystyrene. More than 11 billion pounds per year of polystyrene products are produced annually in the United States. Only about one-third of the total is styrene homopolymer. Polystyrene is a brittle plastic with low impact strength and low solvent resistance (Sec. 3-14b). Copolymerization as well as blending greatly increase the usefulness of polystyrene. Styrene copolymers and blends of copolymers are useful not only as plastics but also as elastomers. Thus copolymerization of styrene with acrylonitrile leads to increased impact and solvent resistance, while copolymerization with 1,3-butadiene leads to elastomeric properties. Combinations of styrene, acrylonitrile, and 1,3-butadiene improve all three properties simultaneously. This and other technological applications of copolymerization are discussed further in Sec. 6-8. [Pg.465]

The term graft copolymer is used to describe copolymers with long sequences of another monomer (comonomer) as branches on the main polymer chain. Most commercial varieties of high-impact polystyrene (HIP) and copolymers of acrylonitrile, butadiene, and styrene (ABS) are graft copolymen in which the main polymer chain is polybutadiene and the branches are styrene, or styrene and acrylonitrile. Figure 1.12 shows various types of copolymers. [Pg.11]

A wide variety of polymers have been analyzed by gel-permeation, or size-exclusion, chromatography (sec) to determine molecular weight distribution of the polymer and additives (86—92). Some work has been completed on expanding this technique to determine branching in certain polymers (93). Combinations of sec with pyrolysis—gc systems have been used to show that the relative composition of polystyrene or acrylonitrile—polystyrene copolymer is independent of molecule size (94). Improvements in gpc include smaller cross-linked polystyrene beads having narrow particle size distributions, which allow higher column efficiency and new families of porous hydrophilic gels to be used for aqueous gpc (95). [Pg.149]

Order-disorder transitions and spinodals were computed for linear multi block copolymers with differing sequence distributions by Fredrickson et al. (1992). This type of copolymer includes polyurethanes, styrene-butadiene rubber, high impact polystyrene (HIPS) and acrylonitrile-butadiene-styrene (ABS) block copolymers. Thus the theory is applicable to a broad range of industrial thermoplastic elastomers and polyurethanes. The parameter... [Pg.79]

Systems in which a polyolefin is the binder have attracted world-wide attention. These include the polyethylene—phenolic microsphere 74,115>, polyethylene or polypropylene—glass microsphere114116), polyethylene or polybutylene—PVC microsphere (containing isobutane)52), and polyethylene/vinyl acetate copolymer—glass microsphere11 systems. Syntactic foams have been made from polystyrene (and its copolymers with chlorostyrene or polychlorostyrene) and microspheres made from polyethylene or polypropylene46115 and foams from styrene/acrylonitrile 1171... [Pg.88]

Styrene is produced by the alkylation of benzene with ethylene followed by catalytic dehydrogenation. It is used in the manufacture of general-purpose and high-impact polystyrene plastics ( 50%), expanded polystyrene ( 7%), copolymer resins with acrylonitrile and butadiene ( 7%) or acrylonitrile only ( 1%), styrene-butadiene latex ( 6%) and synthetic rubber ( 5%), unsaturated polyester resins ( 6%), and as a chemical intermediate. [Pg.2496]

Used as an antioxidant and thermostabilizer for polypropylene, polyethylene, impact resistant polystyrene, poly-4-methyl-pentene. Can be used as a stabilizer for natural and synthetic rubber, polyvinyl chloride. A copolymer of acrylonitrile with butadiene and styrene, polyacetals, alkyde resins, polyamides and polyesters. [Pg.82]


See other pages where Polystyrene copolymer with acrylonitrile is mentioned: [Pg.173]    [Pg.44]    [Pg.408]    [Pg.515]    [Pg.149]    [Pg.30]    [Pg.173]    [Pg.377]    [Pg.56]    [Pg.117]    [Pg.338]    [Pg.10]    [Pg.88]    [Pg.70]    [Pg.191]    [Pg.239]    [Pg.321]    [Pg.677]    [Pg.241]    [Pg.108]    [Pg.580]    [Pg.10]    [Pg.360]    [Pg.156]    [Pg.363]    [Pg.2]    [Pg.816]    [Pg.817]    [Pg.1056]    [Pg.1011]   
See also in sourсe #XX -- [ Pg.148 , Pg.149 ]

See also in sourсe #XX -- [ Pg.148 , Pg.149 ]




SEARCH



Acrylonitrile copolymers

Polystyrene copolymers

Polystyrene-acrylonitrile

© 2024 chempedia.info