Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly polyelectrolytes

Two inorganic water-soluble polymers, both polyelectrolytes in their sodium salt forms, have been known for some time poly(phosphoric acid) (12) and poly(siHcic acid) (13). A more exciting inorganic water-soluble polymer with nonionic... [Pg.318]

The kinetics of vinyl acetate emulsion polymeriza tion in the presence of alkyl phenyl ethoxylate surfactants of various chain lengths indicate that part of the emulsion polymerization occurs in the aqueous phase and part in the particles (115). A study of the emulsion polymerization of vinyl acetate in the presence of sodium lauryl sulfate reveals that a water-soluble poly(vinyl acetate)—sodium dodecyl sulfate polyelectrolyte complex forms, and that latex stabihty, polymer hydrolysis, and molecular weight are controlled by this phenomenon (116). [Pg.466]

Some commercial durable antistatic finishes have been Hsted in Table 3 (98). Early patents suggest that amino resins (qv) can impart both antisHp and antistatic properties to nylon, acryUc, and polyester fabrics. CycHc polyurethanes, water-soluble amine salts cross-linked with styrene, and water-soluble amine salts of sulfonated polystyrene have been claimed to confer durable antistatic protection. Later patents included dibydroxyethyl sulfone [2580-77-0] hydroxyalkylated cellulose or starch, poly(vinyl alcohol) [9002-86-2] cross-linked with dimethylolethylene urea, chlorotria2ine derivatives, and epoxy-based products. Other patents claim the use of various acryUc polymers and copolymers. Essentially, durable antistats are polyelectrolytes, and the majority of usehil products involve variations of cross-linked polyamines containing polyethoxy segments (92,99—101). [Pg.294]

Poly(arylene vinylenes). The use of the soluble precursor route has been successful in the case of poly(arylene vinylenes), both those containing ben2enoid and heteroaromatic species as the aryl groups. The simplest member of this family is poly(p-phenylene vinylene) [26009-24-5] (PPV). High molecular weight PPV is prepared via a soluble precursor route (99—105). The method involves the synthesis of the bis-sulfonium salt from /)-dichloromethylbenzene, followed by a sodium hydroxide elimination polymerization reaction at 0°C to produce an aqueous solution of a polyelectrolyte precursor polymer (11). This polyelectrolyte is then processed into films, foams, and fibers, and converted to PPV thermally (eq. 8). [Pg.38]

Because of the aqueous solubiUty of polyelectrolyte precursor polymers, another method of polymer blend formation is possible. The precursor polymer is co-dissolved with a water-soluble matrix polymer, and films of the blend are cast. With heating, the fully conjugated conducting polymer is generated to form the composite film. This technique has been used for poly(arylene vinylenes) with a variety of water-soluble matrix polymers, including polyacrjiamide, poly(ethylene oxide), polyvinylpyrroHdinone, methylceUulose, and hydroxypropylceUulose (139—141). These blends generally exhibit phase-separated morphologies. [Pg.39]

Conducting polymer composites have also been formed by co-electrodeposition of matrix polymer during electrochemical polymerization. Because both components of the composite are deposited simultaneously, a homogenous film is obtained. This technique has been utilized for both neutral thermoplastics such as poly(vinyl chloride) (159), as well as for a large variety of polyelectrolytes (64—68, 159—165). When the matrix polymer is a polyelectrolyte, it serves as the dopant species for the conducting polymer, so there is an intimate mixing of the polymer chains and the system can be appropriately termed a molecular composite. [Pg.39]

Usually the acid-base properties of poly electrolyte are studied by potentiometric titrations. However it is well known, that understanding of polyelectrolyte properties in solution is based on the knowledge of the thermodynamic properties. Up to now, there is only a small number of microcalorimetry titrations of polyelectrolyte solutions published. Therefore we carried out potentiometric and microcalorimetric titrations of hydrochloric form of the linear and branched polyamines at 25°C and 65°C, to study the influence of the stmcture on the acid-base properties. [Pg.148]

SG sols were synthesized by hydrolysis of tetraethyloxysilane in the presence of polyelectrolyte and surfactant. Poly (vinylsulfonic acid) (PVSA) or poly (styrenesulfonic acid) (PSSA) were used as cation exchangers, Tween-20 or Triton X-100 were used as non- ionic surfactants. Obtained sol was dropped onto the surface of glass slide and dried over night. Template extraction from the composite film was performed in water- ethanol medium. The ion-exchange properties of the films were studied spectrophotometrically using adsorption of cationic dye Rhodamine 6G or Fe(Phen) and potentiometrically by sorption of protons. [Pg.317]

Commercial grades of PVP, K-15, K-30, K-90, and K-120 and the quaternized copolymer of vinylpyrrolidone and dimthylaminoethylmethacrylate (poly-VP/ DMAEMA) made by International Specialty Products (ISP) were used in this study. PEO standard calibration kits were purchased from Polymer Laboratories Ltd. (PL), American Polymer Standards Corporation (APSC), Polymer Standards Service (PSS), and Tosoh Corporation (TSK). In addition, two narrow NIST standards, 1923 and 1924, were used to evaluate commercial PEO standards. Deionized, filtered water, and high-performance liquid chromatography grade methanol purchased from Aldrich or Fischer Scientific were used in this study. Lithium nitrate (LiN03) from Aldrich was the salt added to the mobile phases to control for polyelectrolyte effects. [Pg.501]

The Zincke reaction has also been adapted for the solid phase. Dupas et al. prepared NADH-model precursors 58, immobilized on silica, by reaction of bound amino functions 57 with Zincke salt 8 (Scheme 8.4.19) for subsequent reduction to the 1,4-dihydropyridines with sodium dithionite. Earlier, Ise and co-workers utilized the Zincke reaction to prepare catalytic polyelectrolytes, starting from poly(4-vinylpyridine). Formation of Zincke salts at pyridine positions within the polymer was achieved by reaction with 2,4-dinitrochlorobenzene, and these sites were then functionalized with various amines. The resulting polymers showed catalytic activity in ester hydrolysis. ... [Pg.363]

The structures of these ylide polymers were determined and confirmed by IR and NMR spectra. These were the first stable sulfonium ylide polymers reported in the literature. They are very important for such industrial uses as ion-exchange resins, polymer supports, peptide synthesis, polymeric reagent, and polyelectrolytes. Also in 1977, Hass and Moreau [60] found that when poly(4-vinylpyridine) was quaternized with bromomalonamide, two polymeric quaternary salts resulted. These polyelectrolyte products were subjected to thermal decyana-tion at 7200°C to give isocyanic acid or its isomer, cyanic acid. The addition of base to the solution of polyelectro-lyte in water gave a yellow polymeric ylide. [Pg.378]

The polyelectrolyte catalysis of chemical reactions involving ionic species has been the subject of extensive investigations since the pioneering studies of Morawetz et al. [12] and Ise et al. [13-17]. The catalytic effect or the ability of poly-electrolytes to enhance or retard reaction rates is mainly due to concentration or exclusion of either or both of the ionic reactants by the polyions added to the reaction systems. For example, the chemical reaction between ionic species carrying the same charge is enhanced in the presence of polyions carrying the opposite charge. This enhancement can be attributed to an increase in the local concentration... [Pg.52]

Meisel etal. [18-20] were the first to investigate how the addition of a polyelectrolyte affects photoinduced ET reactions. They found that charge separation was enhanced as a result of the retardation of the back ET when poly(vinyl sulfate) was added to an aqueous reaction system consisting of tris(2,2 -bipyridine)ruthenium(II) chloride (cationic photoactive chromophore) and neutral electron acceptors [21]. More recently, Sassoon and Rabani [22] observed that the addition of polybrene (a polycation) had a significant effect on separating the photoinduced ET products in an aqueous solution containing cir-dicyano-bis(2,2 -bipyridine)ruthenium(II) (photoactive donor) and potassium hexacyano-ferrate(III) (acceptor). These findings are ascribable to the electrostatic potential of the added polyelectrolytes. [Pg.53]

This potential reflects itself in the titration curves of weak polyacids such as poly(acrylic acid) and poly(methacrylic acid) [32]. Apparent dissociation constants of such polyacids change with the dissociation degree of the polyacid because the work to remove a proton from the acid site into the bulk water phase depends on the surface potential of the polyelectrolyte. [Pg.55]

The pioneering work on amphiphilic polyelectrolytes goes back to 1951, when Strauss et al. [25] first synthesized amphiphilic polycations by quaternization of poly(2-vinylpyridine) with n-dodecyl bromide. They revealed that the long alkyl side chains attached to partially quaternized poly(vinylpyridine)s tended to aggregate in aqueous solution so that the polymers assumed a compact conformation when the mole fraction of the hydrophobic side chains exceeded a certain critical value. Thus, Strauss et al. became the first to show experimentally the intramolecular micellation of amphiphilic polymers and the existence of a critical content of hydrophobic residues which may be compared to the critical micelle concentration of ordinary surfactants. They called such amphiphilic polyelectrolytes polysoaps [25],... [Pg.63]

As has been described in Chapter 4, random copolymers of styrene (St) and 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) form a micelle-like microphase structure in aqueous solution [29]. The intramolecular hydrophobic aggregation of the St residues occurs when the St content in the copolymer is higher than ca. 50 mol%. When a small mole fraction of the phenanthrene (Phen) residues is covalently incorporated into such an amphiphilic polyelectrolyte, the Phen residues are hydrophobically encapsulated in the aggregate of the St residues. This kind of polymer system (poly(A/St/Phen), 29) can be prepared by free radical ter-polymerization of AMPS, St, and a small mole fraction of 9-vinylphenanthrene [119]. [Pg.84]

The salt effect is very strong in polyconjugated polyelectrolytes. Figure 15 is a graph of the proton dissociation energy vs. the dissociation degree of PPA of different structures. Also, the graphs for poly(methacrylic acid) and a copolymer... [Pg.29]

Cordes et al995 carried out alkaline hydrolyses of p-nitrophenylhexanoate 55 (PNPH) in the presence of poly-4-vinylpyridine partially quaternized with dodecyl-bromide and ethylbromide (QPVP). They also found that the polyelectrolytes are increasingly effective as catalysts with an increasing ratio of dodecyl to ethyl groups, and the hydrophobic interactions are important in determining the catalytic efficiency. They observed the inhibitory effects of several gegen-anions fluoride ions are the weakest inhibitor, and nitrate is the strongest (F- < Cl < S04 [Pg.159]

We also found the saturation kinetics for alkaline hydrolyses of 44 (PNPA), 3-nitro-4-acetoxybenzoic acid 56 (NABA), and 3-nitro-4-acetoxybenzenearsonie acid 57 (NABAA) in the presence of QPVP1025. If ester-polymer complex formation occurs prior to the attack of OH-, Eq. (5) holds, according to Bunton etal. 103 where K is the equilibrium association constant of polyelectrolyte (PE) and ester (S), and kt the first-order rate coefficients1035, PE, S, and P indicate the poly-... [Pg.159]

Recently, the quaternized poly-4-vinylpyridine, 50-54 (QPVP) was found to be an electron acceptor in the charge-transfer interactions 104 Ishiwatari et al.105) studied alkaline hydrolyses of p-nitrophenyl-3-indoleacetate 58 (p-NPIA) and N-(indole-3-acryloyl) imidazole 59 (IAI) (electron donor) in the presence of QPVP. The fcobs vs. polyelectrolyte concentration plots are shown in Fig. 12. As is seen in... [Pg.161]

Cationic polyelectrolytes containing imidazole groups have been investigated by some researchers. Morawetz et alU4 first found that a cationic polymer, poly (l-vinyl-3-ethylimidazolium iodide), 65 (PQMelm), enhanced the hydrolyses of the negatively charged esters, i. e. NABA and 4-acetoxy-3-nitrobenzenesulfonate 66 (NABS). At intermediate pH, a large catalytic effect was observed and this was... [Pg.163]

Hayama et al.132 discussed the catalytic effects of silver ion-polyacrylic add systems toward the hydrolyses of 2,4-dinitrophenylvinylacetate 84 (DNPVA) by using the weak nudeophilicity of carboxylic groups and the change-transfer interactions between olefinie esters and silver ions133Metal complexes of basic polyelectrolytes are also stimulating as esterase models. Hatano etal. 34, 13S) reported that some copper(II)-poly-L-lysine complexes were active for the hydrolyses of amino acid esters, such as D- and L-phenylalanine methyl ester 85 (PAM). They... [Pg.167]

For poly electrolyte solutions with added salt, prior experimental studies found that the intrinsic viscosity decreases with increasing salt concentration. This can be explained by the tertiary electroviscous effect. As more salts are added, the intrachain electrostatic repulsion is weakened by the stronger screening effect of small ions. As a result, the polyelectrolytes are more compact and flexible, leading to a smaller resistance to fluid flow and thus a lower viscosity. For a wormlike-chain model by incorporating the tertiary effect on the chain... [Pg.104]

The process of adsorption of polyelectrolytes on solid surfaces has been intensively studied because of its importance in technology, including steric stabilization of colloid particles [3,4]. This process has attracted increasing attention because of the recently developed, sophisticated use of polyelectrolyte adsorption alternate layer-by-layer adsorption [7] and stabilization of surfactant monolayers at the air-water interface [26], Surface forces measurement has been performed to study the adsorption process of a negatively charged polymer, poly(styrene sulfonate) (PSS), on a cationic monolayer of fluorocarbon ammonium amphiphilic 1 (Fig. 7) [27],... [Pg.7]

Surface force profiles between these polyelectrolyte brush layers have consisted of a long-range electrostatic repulsion and a short-range steric repulsion, as described earlier. Short-range steric repulsion has been analyzed quantitatively to provide the compressibility modulus per unit area (T) of the poly electrolyte brushes as a function of chain density (F) (Fig. 12a). The modulus F decreases linearly with a decrease in the chain density F, and suddenly increases beyond the critical density. The maximum value lies at F = 0.13 chain/nm. When we have decreased the chain density further, the modulus again linearly decreased relative to the chain density, which is natural for chains in the same state. The linear dependence of Y on F in both the low- and the high-density regions indicates that the jump in the compressibility modulus should be correlated with a kind of transition between the two different states. [Pg.13]

The density-dependent jump in the properties of poly electrolyte brushes has also been fonnd in the transfer ratio and the snrface potential of the brnshes [38], establishing the existence of the density (interchain distancej-dependent transition of polyelectrolytes in solntions. [Pg.14]

Electrophoresis measurements provide a qualitative indication of the assembly of polymer multilayers on colloids [49,50], The -potential as a function of polyelectrolyte layer number for negatively charged polystyrene (PS) particles coated with poly(diallyldimethylam-monium chloride) (PDADMAC) and poly(styrenesulfonate) (PSS) are displayed in Figure... [Pg.510]


See other pages where Poly polyelectrolytes is mentioned: [Pg.320]    [Pg.561]    [Pg.329]    [Pg.88]    [Pg.519]    [Pg.278]    [Pg.294]    [Pg.278]    [Pg.116]    [Pg.13]    [Pg.13]    [Pg.166]    [Pg.28]    [Pg.154]    [Pg.193]    [Pg.13]    [Pg.13]    [Pg.145]    [Pg.371]    [Pg.439]    [Pg.450]    [Pg.450]    [Pg.508]    [Pg.508]   
See also in sourсe #XX -- [ Pg.88 ]

See also in sourсe #XX -- [ Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 ]




SEARCH



© 2024 chempedia.info