Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfonium stable

Sulfur ylides contain a carbanion, which is stabilizea oy an adjacent positively-charged sulfur. Ylides derived from alkylsulfonium salts are usually generated and utilized at low temperatures. Oxosulfonium ylides are, however, stable near room temperature. The most common method of ylide formation is deprotonation of a sulfonium salt. What has been said... [Pg.7]

Sulfur IS more nucleophilic than oxygen (Section 8 7) and sulfides react with alkyl halides much faster than do ethers The products of these reactions called sulfonium salts, are also more stable than the corresponding oxygen analogs... [Pg.686]

NMR spectroscopy is ideal for detecting charged fluorinated intermediates and has been applied to the study of increasingly stable carbocation and carbanion species. Olah [164, 165] has generated stable fluorocarbocations m SbFj/SOjClF at low temperatures The relatively long-lived perfluoro-rerr-butyl anion has been prepared as both the cesium and tris(dimethylamino)sulfonium (TAS) salts by several groups [166, 167, 168], Chemical shifts of fluonnated carbocations and carbanions are listed m Table 23. [Pg.1067]

Stereoselective epoxidation can be realized through either substrate-controlled (e.g. 35 —> 36) or reagent-controlled approaches. A classic example is the epoxidation of 4-t-butylcyclohexanone. When sulfonium ylide 2 was utilized, the more reactive ylide irreversibly attacked the carbonyl from the axial direction to offer predominantly epoxide 37. When the less reactive sulfoxonium ylide 1 was used, the nucleophilic addition to the carbonyl was reversible, giving rise to the thermodynamically more stable, equatorially coupled betaine, which subsequently eliminated to deliver epoxide 38. Thus, stereoselective epoxidation was achieved from different mechanistic pathways taken by different sulfur ylides. In another case, reaction of aldehyde 38 with sulfonium ylide 2 only gave moderate stereoselectivity (41 40 = 1.5/1), whereas employment of sulfoxonium ylide 1 led to a ratio of 41 40 = 13/1. The best stereoselectivity was accomplished using aminosulfoxonium ylide 25, leading to a ratio of 41 40 = 30/1. For ketone 42, a complete reversal of stereochemistry was observed when it was treated with sulfoxonium ylide 1 and sulfonium ylide 2, respectively. ... [Pg.5]

Tetramethyl-l,2-oxathietane (138) was prepared by diazotization of 139, which was prepared from the aziridine (140) (86JA3811).Tlie reaction presumably involves the decomposition of the sulfonium ion intermediate (141).Tire dichloromethane solution of 138 at -20°C is sufficiently stable to permit exploration of the chemical reactions. Tire oxathietane 138 undergoes a formal [[Pg.248]

The structures of these ylide polymers were determined and confirmed by IR and NMR spectra. These were the first stable sulfonium ylide polymers reported in the literature. They are very important for such industrial uses as ion-exchange resins, polymer supports, peptide synthesis, polymeric reagent, and polyelectrolytes. Also in 1977, Hass and Moreau [60] found that when poly(4-vinylpyridine) was quaternized with bromomalonamide, two polymeric quaternary salts resulted. These polyelectrolyte products were subjected to thermal decyana-tion at 7200°C to give isocyanic acid or its isomer, cyanic acid. The addition of base to the solution of polyelectro-lyte in water gave a yellow polymeric ylide. [Pg.378]

Kondo maintained his interest in this area, and with his collaborators [62] he recently made detailed investigations on the polymerization and preparation of methyl-4-vinylphenyl-sulfonium bis-(methoxycarbonyl) meth-ylide (Scheme 27) as a new kind of stable vinyl monomer containing the sulfonium ylide structure. It was prepared by heating a solution of 4-methylthiostyrene, dimethyl-diazomalonate, and /-butyl catechol in chlorobenzene at 90°C for 10 h in the presence of anhydride cupric sulfate, and Scheme 27 was polymerized by using a, a -azobisi-sobutyronitrile (AIBN) as the initiator and dimethylsulf-oxide as the solvent at 60°C. The structure of the polymer was confirmed by IR and NMR spectra and elemental analysis. In addition, this monomeric ylide was copolymerized with vinyl monomers such as methyl methacrylate (MMA) and styrene. [Pg.379]

Divalent sulfur compounds are achiral, but trivalent sulfur compounds called sulfonium stilts (R3S+) can be chiral. Like phosphines, sulfonium salts undergo relatively slow inversion, so chiral sulfonium salts are configurationally stable and can be isolated. The best known example is the coenzyme 5-adenosylmethionine, the so-called biological methyl donor, which is involved in many metabolic pathways as a source of CH3 groups. (The S" in the name S-adenosylmethionine stands for sulfur and means that the adeno-syl group is attached to the sulfur atom of methionine.) The molecule has S stereochemistry at sulfur ana is configurationally stable for several days at room temperature. Jts R enantiomer is also known but has no biological activity. [Pg.315]

Ylides 2 can be prepared in situ from the sulfonium salts 1 with sodium hydride. These ylides 2 react with electrophiles, for example, acetylenes, to give the new stable ylides 3, for R1 =R2 = Me as a mixture of the cis- and trans-isomer, otherwise as the trans-isomer only. Compounds 3 are stable in refluxing tetrahydrofuran for 1 hour, but heating without solvent at 170-200r C for 3 to 5 minutes results in a 1,4-rearrangement to give thiaazulenes 4 quantitatively, with the exception of R1 = R2 = Et, where the yield is 25%.98... [Pg.104]

Another difference between dimethylsulfonium methylide and dimethylsulfoxonium methylide concerns the stereoselectivity in formation of epoxides from cyclohexanones. Dimethylsulfonium methylide usually adds from the axial direction whereas dimethylsulfoxonium methylide favors the equatorial direction. This result may also be due to reversibility of addition in the case of the sulfoxonium methylide.92 The product from the sulfonium ylide is the result the kinetic preference for axial addition by small nucleophiles (see Part A, Section 2.4.1.2). In the case of reversible addition of the sulfoxonium ylide, product structure is determined by the rate of displacement and this may be faster for the more stable epoxide. [Pg.178]

Aside from the methylide and cyclopropylide reagents, the sulfonium ylides are not very stable. A related group of reagents derived from sulfoximines offers greater versatility in alkylidene transfer reactions.286 The preparation and use of this class of ylides is illustrated below. [Pg.179]

The MTM group is selectively removed under nonacidic conditions in aqueous solutions containing Ag+ or Hg2+ salts. The THP and MOM groups are stable under these conditions.161 The MTM group can also be removed by reaction with methyl iodide, followed by hydrolysis of the resulting sulfonium salt in moist acetone.162... [Pg.261]

It was shown that complexes 19 of the zwitterionic precursors of ortho-quinone methides and a bis(sulfonium ylide) derived from 2,5-di hydroxyl 1,4 benzoquinone46 were even more stable than those with amine N-oxides. The bis(sulfonium ylide) complexes were formed in a strict 2 1 ratio (o-QM/ylide) and were unaltered at —78 °C for 10 h and stable at room temperature under inert conditions for as long as 15—30 min (Fig. 6.18).47 The o-QM precursor was produced from a-tocopherol (1), its truncated model compound (la), or a respective ortho-methylphenol in general by Ag20 oxidation in a solution containing 0.50-0.55 equivalents of bis(sulfonium ylide) at —78 °C. Although the species interacting with the ylide was actually the zwitterionic oxidation intermediate 3a and not the o-QM itself, the term stabilized o-QM was introduced for the complexes, since these reacted similar to the o-QMs themselves but in a well defined way without dimerization reactions. [Pg.181]

A thermally stable sulfonium ylide is also obtained from the CuS04-catalyzed reaction between dimethyl diazomalonate and thioxanthene or its 9-alkyl derivatives 339 > rearrangement to the thioxanthen-9-ylmalonate occurs only with base catalysis. [Pg.212]

From the results with the isolable ylides 350, it can be concluded that the fate of less stable, non-isolated sulfonium ylides depends dramatically on their respective substituents 336,338). Thus, the outcome of these reactions is programmed at the ylide stage and not during interaction of a presumed metal carbene with the sulfur-containing substrate. [Pg.212]

Another example has been provided by Ito et al., who described the use of methanofullerene derivatives as powerful and stable precursors for glycofullerenes.217 Their study was based on the use of [60]fullerenoacetyl chloride (227), obtained from the ferf-butyl [60]fullerenoacetate derivative 226, which had been prepared in 56% yield by treatment of corresponding stabilized sulfonium ylides 225 with C6o-218 Subsequent transformation with p-TsOH in toluene gave [60]full-erenoacetic acid, which was directly converted into the corresponding acyl chloride 227 by using thionyl chloride. Standard ester formation with methyl 2,3,4-tetra-O-benzyI -/<-d-gl ucopyranoside (228) and 4-(dimethylamino)pyridine (DMAP) afforded the desired hybrid derivative 229 in 66% yield. [Pg.244]

Nucleophilic substitution at the a-carbon atom does not occur in the case of the most studied and stable bicyclic disulfonium dications.96 Although the reaction of dication 34 with bromide ions formally leads to the S C bond cleavage, the reaction mechanism involves initial nucleophilic attack at the sulfonium atom by the bromide anion. The bromosulfonium salt intermediate... [Pg.429]

Optically active telluronium ylides were not obtained for a long time. Optically active diastereomeric telluronium ylides 7 were obtained for the first time in 1995 by fractional recrystallization of the diastereomeric mixture.19 The absolute configurations of the chiral telluronium ylides were determined by comparing their specific rotations and circular dichroism spectra with those of the corresponding selenonium ylide with known absolute configuration. The telluronium ylides were found to be much more stable toward racemization than the sulfonium and selenonium ylides (Scheme 4). [Pg.579]

Ajoene (Spanish, ajo, garlic), 4,5,9-trithiadodeca-l,6,ll-triene-9-oxide 35 (Scheme 12), an antithrombotic compound with other well-defined physiological properties, is formed from allicin.84 Like allicin, ajoene is a sulfoxide but has two further sulfur atoms in a disulfide linkage. E and Z isomeric forms are possible involving the C=C bond at positions 6 and 7. Ajoene is somewhat more stable than allicin. The formation of ajoene probably involves condensation of 2 molecules of allicin forming a sulfonium salt 33, with elimination of propenesulfenic acid. Elimination of a second molecule of propenesulfenic acid... [Pg.691]

Placing anion stabilizing groups on the cyclopropane greatly facilitates generation of cyclopropyl nucleophiles. The diphenylsulfonium ylide has proven to be an exceptionally versatile conjunctive reagent25). The sulfonium salt 9, available from either 3-chloro-l-iodopropane (Eq. 24a) or 3-chloro-l-propanol (Eq. 24b), is a nicely crystalline stable salt that can be stored indefinitely26,Z7). While substituted... [Pg.17]

The development of new classes of cationic photoinitiators has played a critical role in the production of highly sensitive, acid-catalyzed deep-uv photoresists. Sulfonium salts have been widely used in this respect (4). These materials are relatively easy to prepare and structural modifications can be used to produce desired wavelength sensitivity. Triphenylsulfonium salts are particularly well suited for deep-uv application and in addition can be photosensitized for longer wavelength. These salts are quite stable thermally and certain ones such as the hexafluoroantimonate salt are soluble in casting solvents and thus easily incorporated within resist materials. [Pg.28]

Finally, it should be noted that in contrast to optically labile sulfonium ylides, the oxosulfonium yUdes derived from chiral sulfoximides and related compounds are configurationally stable. Johnson and co-workers (184) have obtained a large number of chiral oxosulfonium ylides having the general structures 161 and 162 and have used them as nucleophilic alkylidene transfer agents for asymmetric synthesis. These results are discussed in the last part of this chapter. [Pg.381]

Alkyl aryl sulfides [48, 56-59] follow the same scheme of oxidation, that is, sulfonium dimers are the main products unless the alkyl group is a stable-leaving group (i-Pr, CH2Ph, CPh3), in the last case, an S—C(sp ) bond cleavage occurs (Scheme 13). [Pg.243]

If acceptor-substituted carbene complexes are generated in the presence of thioethers, ylide formation is generally the mostly favored process. The resulting sulfonium ylides are often sufficiently stable to be isolated [975,1307-1309]. Typical reactions of sulfonium ylides include 1,2-alkyl migration, leading to products of... [Pg.213]

The cation-radicals depicted in Scheme 3.28 form on oxidation of e t(( -2-(2-hydroxy-2-methyl-ethyl)-enr/o-6-(methylthio)-bicyclo[2.2.1]heptane and e t(( -2-(carboxyl)-enr((9-6-(methylthio)-bicyclo[2.2.1]heptane, respectively. Asmus (1990) underlined that only the sulfur atom responds to the one-electron oxidation. This is understandable since sulfur is less electronegative than oxygen. Meanwhile, the onium state is more stable than the sulfonium one. [Pg.160]

The polymerization of LXIII, a stable isolable zwitterion, on heating or photolysis involves nucleophilic attack by phenoxide anion on the cyclic sulfonium ring [Hoyle et al., 2001 Odian et al., 1990]. The reaction proceeds as a step polymerization. [Pg.589]

Thietanonium ions have been observed quite frequently either as intermediates or as isolated stable salts. Treatment of an activated carbohydrate epimer, a constituent of the antiobiotic lincomycin, with thietane led to the sulfonium salt 190. By nucleophilic attack with acetate ions the ring could be opened and the process mentioned above repeated so that compound 191 results. ... [Pg.244]


See other pages where Sulfonium stable is mentioned: [Pg.31]    [Pg.145]    [Pg.855]    [Pg.3]    [Pg.184]    [Pg.855]    [Pg.21]    [Pg.582]    [Pg.185]    [Pg.68]    [Pg.38]    [Pg.452]    [Pg.210]    [Pg.167]    [Pg.240]    [Pg.145]    [Pg.62]    [Pg.625]    [Pg.246]   


SEARCH



Sulfonium

© 2024 chempedia.info