Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly flame retardants

Barium Metaborate. Barium metaborate is used both as a flame retarder and as an antihmgicide for many flexible poly(vinyl chloride) apphcations (19). [Pg.457]

Alumina trihydtate is also used as a secondary flame retardant and smoke suppressant for flexible poly(vinyl chloride) and polyolefin formulations in which antimony and a halogen ate used. The addition of minor amounts of either zinc borate or phosphoms results in the formation of glasses which insulate the unbumed polymer from the flame (21). [Pg.458]

Molybdenum Oxides. Molybdenum was one of the first elements used to retard the flames of ceUulosics (2). Mote recently it has been used to impart flame resistance and smoke suppression to plastics (26). Molybdic oxide, ammonium octamolybdate, and zinc molybdate ate the most widely used molybdenum flame retardants. Properties ate given in Table 5. These materials ate recommended almost exclusively for poly(vinyl chloride), its alloys, and unsaturated polyesters (qv). [Pg.458]

Molybdenum trioxide is a condensed-phase flame retardant (26). Its decomposition products ate nonvolatile and tend to increase chat yields. Two parts of molybdic oxide added to flexible poly(vinyl chloride) that contains 30 parts of plasticizer have been shown to increase the chat yield from 9.9 to 23.5%. Ninety percent of the molybdenum was recovered from the chat after the sample was burned. A reaction between the flame retardant and the chlorine to form M0O2 012 H20, a nonvolatile compound, was assumed. This compound was assumed to promote chat formation (26,27). [Pg.458]

Poly(vinyl chloride). PVC is a hard, brittle polymer that is self-extinguishing. In order to make PVC useful and more pHable, plasticizers (qv) are added. More often than not the plasticizers are flammable and make the formulation less flame resistant. Flammability increases as the plasticizer is increased and the relative amount of chlorine decreased, as shown in Table 7. The flame resistance of the poly(vinyl chloride) can be increased by the addition of an inorganic flame-retardant synergist. [Pg.459]

Alumina Trihydrate. Alumina trihydrate is usually used as a secondary flame retardant in flexible PVC because of the high concentration needed to be effective. As a general rule the oxygen index of flexible poly(vinyl chloride) increases 1% for every 10% of alumina trihydrate added. The effect of alumina trihydrate on a flexible poly(vinyl chloride) formulation containing antimony oxide is shown in Figure 5. [Pg.461]

Brominated Styrene. Dibromostyrene [31780-26 ] is used commercially as a flame retardant in ABS (57). Tribromostyrene [61368-34-1] (TBS) has been proposed as a reactive flame retardant for incorporation either during polymerization or during compounding. In the latter case, the TBS could graft onto the host polymer or homopolymerize to form poly(tribromostyrene) in situ (58). [Pg.470]

In poly(ethylene terephthalate) (14—16) and poly(methyl methacrylate) (17—19), the mechanism of action of phosphoms flame retardants is at least partly attributable to a decrease in the amount of combustible volatiles and a corresponding increase in nonvolatile residue (char). In poly(methyl methacrylate), the phosphoms flame retardant appears to cause an initial cross-linking through anhydride linkages (19). [Pg.475]

Physical or chemical vapor-phase mechanisms may be reasonably hypothesized in cases where a phosphoms flame retardant is found to be effective in a noncharring polymer, and especially where the flame retardant or phosphoms-containing breakdown products are capable of being vaporized at the temperature of the pyrolyzing surface. In the engineering of thermoplastic Noryl (General Electric), which consists of a blend of a charrable poly(phenylene oxide) and a poorly charrable polystyrene, experimental evidence indicates that effective flame retardants such as triphenyl phosphate act in the vapor phase to suppress the flammabiUty of the polystyrene pyrolysis products (36). [Pg.475]

Antagonism between antimony oxide and phosphoms flame retardants has been reported in several polymer systems, and has been explained on the basis of phosphoms interfering with the formation or volatilization of antimony haUdes, perhaps by forming antimony phosphate (12,13). This phenomenon is also not universal, and depends on the relative amounts of antimony and phosphoms. Some useful commercial poly(vinyl chloride) (PVC) formulations have been described for antimony oxide and triaryl phosphates (42). Combinations of antimony oxide, halogen compounds, and phosphates have also been found useful in commercial flexible urethane foams (43). [Pg.475]

Polyester Fibers Containing Phosphorus. Numerous patents describe poly(ethylene terephthalate) (PET) flame-retarded with phosphoms-containing diftmctional reactants. At least two of these appear to be commercial. [Pg.480]

This phosphinic anhydride [15171 -48-9] C H O P, is then reacted with glycol and other precursors of poly(ethylene terephthalate), to produce a flame-retardant polyester [82690-14-0] having phosphinate units of the stmcture —0P(0)(CH2)CH2CH2C00—. Trevira 271 is useflil for children s sleepwear, work clothing, and home flirnishings. A phosphoms content as low as 0.6% is reported to be sufficient for draperies and upholstery tests if melt-drip is not retarded by print pigments or the presence of nonthermoplastic fibers (28). [Pg.480]

THPC—Amide—PoIy(vinyI bromide) Finish. A flame retardant based on THPC—amide plus poly(vinyl bromide) [25951-54-6] (143) has been reported suitable for use on 35/65, and perhaps on 50/50, polyester—cotton blends. It is appUed by the pad-dry-cure process, with curing at 150°C for about 3 min. A typical formulation contains 20% THPC, 3% disodium hydrogen phosphate, 6% urea, 3% trimethylolglycouril [496-46-8] and 12% poly(vinyl bromide) soUds. Approximately 20% add-on is required to impart flame retardancy to a 168 g/m 35/65 polyester—cotton fabric. Treated fabrics passed the FF 3-71 test. However, as far as can be determined, poly(vinyl bromide) is no longer commercially available. [Pg.491]

Alkenylsuccinic anhydrides made from several linear alpha olefins are used in paper sizing, detergents, and other uses. Sulfosuccinic acid esters serve as surface active agents. Alkyd resins (qv) are used as surface coatings. Chlorendric anhydride [115-27-5] is used as a flame resistant component (see Flame retardants). Tetrahydrophthalic acid [88-98-2] and hexahydrophthalic anhydride [85-42-7] have specialty resin appHcations. Gas barrier films made by grafting maleic anhydride to polypropylene [25085-53-4] film are used in food packaging (qv). Poly(maleic anhydride) [24937-72-2] is used as a scale preventer and corrosion inhibitor (see Corrosion and corrosion control). Maleic anhydride forms copolymers with ethylene glycol methyl vinyl ethers which are partially esterified for biomedical and pharmaceutical uses (189) (see Pharmaceuticals). [Pg.461]

Poly(vinyl chloride). PVC is one of the most important and versatile commodity polymers (Table 4). It is inherently flame retardant and chemically resistant and has found numerous and varied appHcations, principally because of its low price and capacity for being modified. Without modification, processibiUty, heat stabiUty, impact strength, and appearance all are poor. Thermal stabilizers, lubricants, plasticizers, impact modifiers, and other additives transform PVC into a very versatile polymer (257,258). [Pg.420]

Propylene oxide has found use in the preparation of polyether polyols from recycled poly(ethylene terephthalate) (264), haUde removal from amine salts via halohydrin formation (265), preparation of flame retardants (266), alkoxylation of amines (267,268), modification of catalysts (269), and preparation of cellulose ethers (270,271). [Pg.143]

When exposed to heat, cotton fabrics, like most substances, increase in temperature to an extent that is proportional to their specific heats. Altering the chemical composition of the fabrics such that large amounts of heat are absorbed and released in repeatable cycles of controllable temperature ranges produces fabrics that are described as temperature adaptable. The process insolubili2es poly(ethylene glycol)s cross-linked with methylolamides in the cotton fabric (78). As with flame-retardant cellulose, attachment is through an ether linkage to the cellulose at a relatively low DS. [Pg.316]

Blends of ABS with polycarbonates have been available for several years (e.g. Bayblend by Bayer and Cycoloy by Borg-Wamer). In many respects these polymers have properties intermediate to the parent plastics materials with heat distortion temperatures up to 130°C. They also show good impact strength, particularly at low temperatures. Self-extinguishing and flame retarding grades have been made available. The materials thus provide possible alternatives to modified poly(phenylene oxides) of the Noryl type described in Chapter 21. (See also sections 16.16 and 20.8.)... [Pg.446]

Phosphorus containing poly(maleimide-amines) were synthesized from N,N -bisdichloromaleimido-3,3 -diphenyl alkylphosphine oxides and aromatic diamines or piperazine [144]. The polymers prepared from piperazine are soluble in DMF, DM AC, DMSO, etc., but have poor thermal stability and flame retardancy. [Pg.46]

Abstract In this paper the synthesis, properties and applications of poly(organophos-phazenes) have been highlighted. Five different classes of macromolecules have been described, i.e. phosphazene fluoroelastomers, aryloxy-substituted polymeric flame-retardants, alkoxy-substituted phosphazene electric conductors, biomaterials and photo-inert and/or photo-active phosphazene derivatives. Perspectives of future developments in this field are briefly discussed. [Pg.166]

Various techniques have been used for the determination of oligomers, including GC [135], HPLC [136-138], TLC for polystyrene and poly a-methyl-styrene [139] and SEC for polyesters [140,141]. GC and PyGC-MS can also profitably be used for the analysis of the compositions of volatile products formed using different flame retardants (FRs). Takeda [142] reported that volumes and compositions of the volatile products and morphology of the char were affected by FRs, polymers (PC, PPE, PBT) and their reactions from 300... [Pg.196]

PP-g-MA) silicate nanocomposites and intercalated thermoset silicate nanocomposites for flame-retardant applications were characterised by XRD and TEM [333], XRD, TEM and FTIR were also used in the study of ID CdS nanoparticle-poly(vinyl acetate) nanorod composites prepared by hydrothermal polymerisation and simultaneous sulfidation [334], The CdS nanoparticles were well dispersed in the polymer nanorods. The intercalation of polyaniline (PANI)-DDBSA (dodecylbenzene-sulfonate) into the galleries of organo-montmorillonite (MMT) was confirmed by XRD, and significantly large 4-spacing expansions (13.3-29.6A) were observed for the nanocomposites [335],... [Pg.647]

As many bromine-containing flame retardants do not dissolve in common NMR solvents (typically CDCI3 and tetrachloroethane), ll 1-NMR can not generally be applied and 13C s-NMR may then be called in. However, in favourable circumstances, e.g. for FR 1025 (poly-pentabromobenzylacrylate, Ameribrom) in PBT (Tribit 1500 GN 30), direct H 1-NMR in C2D2Cl4 of the fraction insoluble in HFIP can be used, in view of the unique resonance position of the benzylacrylate fragment in FR-1025. [Pg.701]

In recent years, many poly(phosphazenes), [RoPN]n, with a variety of substituents at phosphorus have been prepared and they often exhibit useful properties including low temperature flexibility, resistance to chemical attack, flame retardancy, stability to UV radiation, and reasonably high thermal stability. (1,2) Compounds containing biologically, catalytically, or electrically active side groups are also being investigated. (3,4)... [Pg.283]

Du, M.Gao and Jia, D. (2006) Thermal stability and flame retardant effect of halloysite nanotubules on Poly(propylene). European Polymer Journal, 42, 1362-1369. [Pg.441]

Jr.,and L.D.escott, Jr., "New Insights into the Flame-Retardance Chemistry of Poly (Vinyl Chloride)," Nineteenth Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, 807 (1982). ... [Pg.128]

A detailed understanding of the course of a reaction between a polymer and an additive will permit one to use that information to design new flame retardants. The reaction between poly(methyl methacrylate), PMMA, and red phosphorus is described and that information used to determine that CIRh(PPh3)3 should be used as a flame retardant. The results of this investigation are then used to choose the next additive. A recurring theme is the efficacy of cross-linking as a means to impart an increased thermal stability. [Pg.178]


See other pages where Poly flame retardants is mentioned: [Pg.450]    [Pg.487]    [Pg.421]    [Pg.327]    [Pg.329]    [Pg.68]    [Pg.350]    [Pg.528]    [Pg.337]    [Pg.271]    [Pg.271]    [Pg.107]    [Pg.73]    [Pg.358]    [Pg.276]    [Pg.110]    [Pg.146]    [Pg.715]    [Pg.762]    [Pg.291]    [Pg.196]    [Pg.245]   
See also in sourсe #XX -- [ Pg.213 , Pg.214 ]




SEARCH



Flame retardancy poly

Flame retardancy poly

Flame retardants poly(vinyl alcohol) and silicon compounds

© 2024 chempedia.info