Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poisons, examples

In certain instances of poisoning, especially in the case of base metal catalysts, the deactivation can be simply explained by the formation of new bulk solid phases between the base metal and the poison. Examples are the formation of lead vanadates (14) in vanadia catalysts, or of sulfates in copper-chromite and other base metal catalysts (81). These catalyti-cally inactive phases are identifiable by X-ray diffraction. Often, the conditions under which deactivation occurs coincide with the conditions of stability of these inert phases. Thus, a base metal catalyst, deactivated as a sulfate, can be reactivated by bringing it to conditions where the sulfate becomes thermodynamically unstable (45). In noble metal catalysts the interaction is assumed to be, in general, confined to the surface, although bulk interactions have also been postulated. [Pg.352]

Simple asphyxiant A material that replaces the amount of oxygen admitted into the body without further damage to tissue or poisoning. Examples are nitrogen and carbon dioxide. [Pg.408]

Forensic Chemistry has strong links with forensic toxicology, the science of poisons . Examples of molecules of interest to the forensic chemist are given in Figure 23.1. [Pg.422]

A. Assessment. Muscle cell necrosis is a common complication of poisoning. Examples of drugs and toxins causing rhabdomyolysis are listed in Table 1-16. [Pg.27]

Although in the poisoner examples above, the use of stereoselective is preferred because of its denotation in simple organic reactions, we must also consider another term, stereoregular. Its acceptance in polymer chemistry is indicated by its use in reviews by Gaylord and Mark (1959) and by Bawn and Ledwith (1962). This term is generally used for any reaction which leads to stereochemical regularity in macromolecules, whether stereospecific or stereoselective as defined by Eliel. [Pg.192]

Inhalation, The effects of inhalation exposure to corrosives can vary from severe but reversible irritation of the respiratory system to pulmonary edema, pneumonitis, complete destruction of the respiratory mucosa, or systemic poisoning. Examples 1) Ammonia gas produces a severe irritation of the respiratory tract through alkaline caustic action. 2) Chlorine, phosgene, or nitrogen oxides cause an initial irritation of the respiratory tract, but these chemicals may also eventually produce a delayed or even relapsing pulmonary edema. 3) Ethyleneimine and... [Pg.146]

As organosulfur compounds have been widely believed to be catalyst poisons, examples of the transition metal catalyzed reaction of these sulfur compounds have been limited. After the development of transition metal catalyzed addition of organosulfur compounds such as disulfides and thiols to carbon-triple bonds [9], many types of transition metal catalyzed addition reactions of organosulfur compounds have been developed. As to allenes, for example, the addition of thiols to terminal allenes successfully proceeds regioselectively at the internal double bonds of the allenes by the action of palladium acetate catalyst [10a,10b], while the disulfide addition to terminal allenes takes place at the terminal double bond in the presence of tetrakis (triphenylphosphine) palladium catalyst (Scheme 11.6) [10c]. [Pg.293]

Chromates and dichromates are used in industry as oxidising agents, for example in the coal tar industry, in the leather industry (chrome taiming), and in the dye industry as mordants. Some chromates are used as pigments, for example those of zinc and lead. Chromates and dichromates are poisonous. [Pg.380]

It should be noted that a number of different enzyme preparations can now be purchased directly from manufacturing chemists. It must be emphasised that the activity of an enzyme, whether purchased or prepared in the laboratory, may vary between rather wide limits. The activity is dependent on the source of the enzyme, the presence of poisons and also on the temperature. It appears, for example, that the quality of horseradish peroxidase depends upon the season of the year at which the root is obtained from the ground. It cannot be expected therefore that all the experiments described below will work always with the precision characteristic of an organic reaction proceeding under accurately known conditions. [Pg.510]

Other mixtures which may be employed are carbon tetrachloride (b.p. 77°) and toluene (b.p. 110-111°) chloroform (b.p. 61°) and toluene methyl alcohol (b.p. 65°) and water (b.p. 100°). The last example is of interest because almost pure methyl alcohol may be isolated no constant boiling point mixture (or azeotropic mixture) is formed (compare ethyl alcohol and water, Sections 1,4 and 1,5). Attention is directed to the poisonous character of methyl alcohol the vapour should therefore not be inhaled. [Pg.232]

Mandelic acid. This preparation is an example of the synthesis of an a-hydroxy acid by the cyanohydrin method. To avoid the use of the very volatile and extremely poisonous hquid hydrogen cyanide, the cyanohydrin (mandelonitrile) is prepared by treatment of the so um bisulphite addition compound of benzaldehj de (not isolated) with sodium cyanide ... [Pg.754]

The reagent Is expensive and poisonous, consequently the hydroxylation procedure is employed only for the conversion of rare or expensive alkenes (e.g., in the steroid field) into the glycols. Another method for hydroxylation utilises catalytic amounts of osmium tetroxide rather than the stoichiometric quantity the reagent is hydrogen peroxide in tert.-butyl alcohol This reagent converts, for example, cyc/ohexene into cis 1 2- t/ohexanedlol. [Pg.894]

Elucidating Mechanisms for the Inhibition of Enzyme Catalysis An inhibitor interacts with an enzyme in a manner that decreases the enzyme s catalytic efficiency. Examples of inhibitors include some drugs and poisons. Irreversible inhibitors covalently bind to the enzyme s active site, producing a permanent loss in catalytic efficiency even when the inhibitor s concentration is decreased. Reversible inhibitors form noncovalent complexes with the enzyme, thereby causing a temporary de-... [Pg.638]

The stocking of ponds, lakes, and reservoirs to increase the production of desirable fishes that depend on natural productivity for their food supply and are ultimately captured by recreational fishermen or for subsistence is another example of extensive aquaculture. Some would consider such practices as lying outside of the realm of aquaculture, but since the practice involves human intervention and often employs fishes produced in hatcheries, recreational or subsistence level stocking is associated with, if not a part of aquaculture. Similarly, stocking new ponds or water bodies which have been drained or poisoned to eliminate undesirable species prior to restocking, can lead to increased production of desirable species. [Pg.15]

Covalent synthesis of complex molecules involves the reactive assembly of many atoms into subunits with aid of reagents and estabUshed as well as innovative reaction pathways. These subunits are then subjected to various reactions that will assemble the target molecule. These reaction schemes involve the protection of certain sensitive parts of the molecule while other parts are being reacted. Very complex molecules can be synthesized in this manner. A prime example of the success of this approach is the total synthesis of palytoxin, a poisonous substance found in marine soft corals (35). Other complex molecules synthesized by sequential addition of atoms and blocks of atoms include vitamin potentially anticancer KH-1 adenocarcinoma antigen,... [Pg.206]

Many other bisben2ylisoquinoliae alkaloids, such as tetrandriae (80), from Cjcleapeltata Hook., are also known. Compound (80), for example, although it causes hypotension and hepatotoxicity ia mammals, ia other tests, possessed enough anticancer activity to be considered for preclioical evaluation (55). The arrow poison tubocurare prepared from Chondrendendron spp. also contains the bisben2yhsoquiQoline alkaloid tubocurariae (9). [Pg.545]

The advent of a large international trade in methanol as a chemical feedstock has prompted additional purchase specifications, depending on the end user. Chlorides, which would be potential contaminants from seawater during ocean transport, are common downstream catalyst poisons likely to be excluded. Limitations on iron and sulfur can similarly be expected. Some users are sensitive to specific by-products for a variety of reasons. Eor example, alkaline compounds neutralize MTBE catalysts, and ethanol causes objectionable propionic acid formation in the carbonylation of methanol to acetic acid. Very high purity methanol is available from reagent vendors for small-scale electronic and pharmaceutical appHcations. [Pg.282]

Tb allium, which does not occur naturaHy in normal tissue, is not essential to mammals but does accumulate in the human body. Levels as low as 0.5 mg/100 g of tissue suggest thallium intoxication. Based on industrial experience, 0.10 mg /m of thallium in air is considered safe for a 40-h work week (37). The lethal dose for humans is not definitely known, but 1 g of absorbed thallium is considered sufficient to kHl an adult and 10 mg/kg body weight has been fatal to children. In severe cases of poisoning, death does not occur earlier than 8—10 d but most frequently in 10—12 d. Tb allium excretion is slow and prolonged. For example, tb allium is present in the feces 35 d after exposure and persists in the urine for up to three months. [Pg.470]

Catalysts commonly lose activity in operation as a result of accumulation of materials from the reactant stream. Catalyst poisoning is a chemical phenomenon, A catalyst poison is a component such as a feed impurity that as a result of chemisorption, even in smaH amounts, causes the catalyst to lose a substantial fraction of its activity. For example, sulfur compounds in trace amounts poison metal catalysts. Arsenic and phosphoms compounds are also poisons for a number of catalysts. Sometimes the catalyst surface has such a strong affinity for a poison that it scavenges it with a high efficiency. The... [Pg.173]

A selective poison is one that binds to the catalyst surface in such a way that it blocks the catalytic sites for one kind of reaction but not those for another. Selective poisons are used to control the selectivity of a catalyst. For example, nickel catalysts supported on alumina are used for selective removal of acetjiene impurities in olefin streams (58). The catalyst is treated with a continuous feed stream containing sulfur to poison it to an exacdy controlled degree that does not affect the activity for conversion of acetylene to ethylene but does poison the activity for ethylene hydrogenation to ethane. Thus the acetylene is removed and the valuable olefin is not converted. [Pg.174]

Other Lethal Agents. There are a number of substances, many found in nature, which are known to be more toxic than nerve agents (6). None has been weaponized. Examples of these toxic natural products include shellfish poison, isolated from toxic clams puffer fish poison, isolated from the viscera of the puffer fish the active principle of curare "heart poisons" of the digitaUs type the active principle of the sea cucumber active principles of snake venom and the protein ricin, obtained from castor beans (See Castor oil). [Pg.399]


See other pages where Poisons, examples is mentioned: [Pg.45]    [Pg.105]    [Pg.344]    [Pg.622]    [Pg.37]    [Pg.291]    [Pg.147]    [Pg.347]    [Pg.45]    [Pg.105]    [Pg.344]    [Pg.622]    [Pg.37]    [Pg.291]    [Pg.147]    [Pg.347]    [Pg.655]    [Pg.530]    [Pg.106]    [Pg.303]    [Pg.274]    [Pg.525]    [Pg.241]    [Pg.261]    [Pg.261]    [Pg.422]    [Pg.195]    [Pg.393]    [Pg.381]    [Pg.392]    [Pg.489]   
See also in sourсe #XX -- [ Pg.79 , Pg.80 , Pg.81 ]




SEARCH



Cholinergic poisons, examples

Fish poisons, examples containing

Poisoning example

Poisoning first example

Water poisoning, historical example

© 2024 chempedia.info