Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen hquid

Mandelic acid. This preparation is an example of the synthesis of an a-hydroxy acid by the cyanohydrin method. To avoid the use of the very volatile and extremely poisonous hquid hydrogen cyanide, the cyanohydrin (mandelonitrile) is prepared by treatment of the so um bisulphite addition compound of benzaldehj de (not isolated) with sodium cyanide ... [Pg.754]

Manufacture. Furfuryl alcohol has been manufactured on an industrial scale by employing both Hquid-phase and vapor-phase hydrogenation of furfural (56,57). Copper-based catalysts are preferred because they are selective and do not promote hydrogenation of the ring. [Pg.80]

Catalytic hydrogenation of furan to tetrahydrofuran is accompHshed in either Hquid or vapor phase. Hydrogenation of the double bonds is essentially quantitative over nickel catalysts but is generally accompanied by hydrogenolysis over the noble metals. [Pg.81]

In a related process, 1,4-dichlorobutene was produced by direct vapor-phase chlorination of butadiene at 160—250°C. The 1,4-dichlorobutenes reacted with aqueous sodium cyanide in the presence of copper catalysts to produce the isomeric 1,4-dicyanobutenes yields were as high as 95% (58). The by-product NaCl could be recovered for reconversion to Na and CI2 via electrolysis. Adiponitrile was produced by the hydrogenation of the dicyanobutenes over a palladium catalyst in either the vapor phase or the Hquid phase (59,60). The yield in either case was 95% or better. This process is no longer practiced by DuPont in favor of the more economically attractive process described below. [Pg.220]

Uses. The principal use of adiponitrile is for hydrogenation to hexamethylene diamine leading to nylon-6,6. However, as a result of BASE s new adiponitrile-to-caprolactam process, a significant fraction of ADN produced may find its way into nylon-6 production. Adipoquanamine, which is prepared by the reaction of adiponitrile with dicyandiamide [461-58-5] (cyanoguanidine), may have uses in melamine—urea amino resins (qv) (see "Benzonitrile, Uses"). Its typical Hquid nitrile properties suggest its use as an extractant for aromatic hydrocarbons. [Pg.221]

This was a Hquid-phase process which used what was described as siUceous zeoUtic catalysts. Hydrogen was not required in the process. Reactor pressure was 4.5 MPa and WHSV of 0.68 kg oil/h kg catalyst. The initial reactor temperature was 127°C and was raised as the catalyst deactivated to maintain toluene conversion. The catalyst was regenerated after the temperature reached about 315°C. Regeneration consisted of conventional controlled burning of the coke deposit. The catalyst life was reported to be at least 1.5 yr. [Pg.416]

The mixture is cooled and noncondensable gases are scmbbed with water. Some of the resultant gas stream, mainly hydrogen, may be recycled to control catalyst fouhng. The Hquids are fractionally distilled, taking acetone overhead and a mixture of isopropyl alcohol and water as bottoms. A caustic treatment maybe used to remove minor aldehyde contaminants prior to this distillation (29). In another fractionating column, the aqueous isopropyl alcohol is concentrated to about 88% for recycle to the reactor. [Pg.96]

Ma.nufa.cture. Butenediol is manufactured by partial hydrogenation of butynediol. Although suitable conditions can lead to either cis or trans isomers (111), the commercial product contains almost exclusively iVj -2-butene-l,4-diol Trans isomer, available at one time by hydrolysis of l,4-dichloro-2-butene, is unsuitable for the major uses of butenediol involving Diels-Alder reactions. The Hquid-phase heat of hydrogenation of butynediol to butenediol is 156 kj/mol (37.28 kcal/mol) (112). [Pg.107]

Wkiterization is a specialized appHcation of fractional crystallization that is utilized to remove saturates or waxes from Hquid oils. Salad oils, which do not cloud at refrigerator temperature, have been produced by winterizing lightly hydrogenated soybean ok. However, many producers now use refined, bleached, deodorized oks for this purpose (24). [Pg.127]

Since 1960, about 95% of the synthetic ammonia made in the United States has been made from natural gas worldwide the proportion is about 85%. Most of the balance is made from naphtha and other petroleum Hquids. Relatively small amounts of ammonia are made from hydrogen recovered from coke oven and refinery gases, from electrolysis of salt solutions, eg, caustic chlorine production, and by electrolysis of water. In addition there are about 20 ammonia plants worldwide that use coal as a hydrogen source. [Pg.243]

Table 1 Hsts some of the physical properties of duoroboric acid. It is a strong acid in water, equal to most mineral acids in strength and has a p p o of —4.9 as compared to —4.3 for nitric acid (9). The duoroborate ion contains a neady tetrahedral boron atom with almost equidistant B—F bonds in the sohd state. Although lattice effects and hydrogen bonding distort the ion, the average B—F distance is 0.138 nm the F—B—F angles are neady the theoretical 109° (10,11). Raman spectra on molten, ie, Hquid NaBF agree with the symmetrical tetrahedral stmcture (12). Table 1 Hsts some of the physical properties of duoroboric acid. It is a strong acid in water, equal to most mineral acids in strength and has a p p o of —4.9 as compared to —4.3 for nitric acid (9). The duoroborate ion contains a neady tetrahedral boron atom with almost equidistant B—F bonds in the sohd state. Although lattice effects and hydrogen bonding distort the ion, the average B—F distance is 0.138 nm the F—B—F angles are neady the theoretical 109° (10,11). Raman spectra on molten, ie, Hquid NaBF agree with the symmetrical tetrahedral stmcture (12).
Physical Properties. Physical properties of anhydrous hydrogen fluoride are summarized in Table 1. Figure 1 shows the vapor pressure and latent heat of vaporization. The specific gravity of the Hquid decreases almost linearly from 1.1 at —40°C to 0.84 at 80°C (4). The specific heat of anhydrous HF is shown in Figure 2 and the heat of solution in Figure 3. [Pg.190]

Fig. 2. Specific heat of Hquid anhydrous hydrogen fluoride (5,16). To convert to cal, divide by 4.184. Fig. 2. Specific heat of Hquid anhydrous hydrogen fluoride (5,16). To convert to cal, divide by 4.184.
Anhydrous FeF is prepared by the action of Hquid or gaseous hydrogen fluoride on anhydrous FeCl (see Iron compounds). FeF is insoluble in alcohol, ether, and ben2ene, and sparingly soluble in anhydrous HF and water. The pH of a saturated solution in water varies between 3.5 and 4.0. Low pH indicates the presence of residual amounts of HF. The light gray color of the material is attributed to iron oxide or free iron impurities in the product. [Pg.202]


See other pages where Hydrogen hquid is mentioned: [Pg.455]    [Pg.455]    [Pg.535]    [Pg.791]    [Pg.932]    [Pg.63]    [Pg.88]    [Pg.88]    [Pg.89]    [Pg.222]    [Pg.232]    [Pg.343]    [Pg.412]    [Pg.94]    [Pg.233]    [Pg.321]    [Pg.447]    [Pg.503]    [Pg.503]    [Pg.40]    [Pg.81]    [Pg.125]    [Pg.126]    [Pg.127]    [Pg.131]    [Pg.132]    [Pg.163]    [Pg.163]    [Pg.281]    [Pg.132]    [Pg.178]    [Pg.186]    [Pg.190]    [Pg.193]    [Pg.200]    [Pg.235]    [Pg.269]    [Pg.274]   
See also in sourсe #XX -- [ Pg.99 ]




SEARCH



© 2024 chempedia.info