Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Internal double bond

Note that for 4.42, in which no intramolecular base catalysis is possible, the elimination side reaction is not observed. This result supports the mechanism suggested in Scheme 4.13. Moreover, at pH 2, where both amine groups of 4.44 are protonated, UV-vis measurements indicate that the elimination reaction is significantly retarded as compared to neutral conditions, where protonation is less extensive. Interestingy, addition of copper(II)nitrate also suppresses the elimination reaction to a significant extent. Unfortunately, elimination is still faster than the Diels-Alder reaction on the internal double bond of 4.44. [Pg.116]

Various terminal allylic compounds are converted into l-alkenes at room temperature[362]. Regioselective hydrogenolysis with formate is used for the formation of an exo-methylene group from cyclic allylic compounds by the formal anti thermodynamic isomerization of internal double bonds to the exocyclic position[380]. Selective conversion of myrtenyl formate (579) into /9-pinene is an example. The allylic sulfone 580 and the allylic nitro compound... [Pg.368]

Various butadiene telomers obtained by Pd-calalyzed reactions have one functional group at one end and a terminal and an internal double bond, and they... [Pg.441]

The 3.8-nonadienoate 91, obtained by dimerization-carbonylation, has been converted into several natural products. The synthesis of brevicomin is described in Chapter 3, Section 2.3. Another royal jelly acid [2-decenedioic acid (149)] was prepared by cobalt carbonyl-catalyzed carbonylation of the terminal double bond, followed by isomerization of the double bond to the conjugated position to afford 149[122], Hexadecane-2,15-dione (150) can be prepared by Pd-catalyzed oxidation of the terminal double bond, hydrogenation of the internal double bond, and coupling by Kolbe electrolysis. Aldol condensation mediated by an organoaluminum reagent gave the unsaturated cyclic ketone 151 in 65% yield. Finally, the reduction of 151 afforded muscone (152)[123]. n-Octanol is produced commercially as described beforc[32]. [Pg.445]

The product of 1 4 addition 1 bromo 2 butene contains an internal double bond and so IS more stable than the product of 1 2 addition 3 bromo 1 butene which has a terminal double bond... [Pg.406]

This synthesis method can be utilised by any alkene or alkyne, but steric hindrance on internal double bonds can cause these reactions to be quite slow. Conjugated dienes and aromatic alkenes are not suited for the ultraviolet light-initiated process. The use of other free-radical initiators is required in free-radical-initiated reactions involving these species. [Pg.11]

Homopolymerization of butadiene can proceed via 1,2- or 1,4-additions. The 1,4-addition produces the geometrically distinguishable trans or cis stmctures with internal double bonds on the polymer chains, 1,2-Addition, on the other hand, yields either atactic, isotactic, or syndiotactic polymer stmctures with pendent vinyl groups (Eig. 2). Commercial production of these polymers started in 1960 in the United States. Eirestone and Goodyear account for more than 60% of the current production capacity (see Elastomers, synthetic-polybutadiene). [Pg.345]

Isomerization of fluoroolefins by a shift of a double bond is catalyzed by halide 10ns [7] The presence of crown ether makes this reaction more efficient [74] Prolonged reaction time favors the rearranged product with an internal double bond (equations 3-5) Isomerization of perfluoro-l-pentene with cesium fluoride yields perfluoro-2-pentenes in a Z ratio of 1 6 [75] Antimony pentafluoride also causes isomenzation of olefins leading to more substituted products [76]... [Pg.913]

Braun [22] showed from ozonolysis that for fractions of bulk PVC the number of internal double bonds and the rate of thermal degradation, although dependent on each other, were independent of the molecular weight. This clearly demonstrated the role of internal unsaturation on the stability of the polymer. After careful chlorination of the double bonds, an increase in thermal stability was observed and the number of double bonds as determined by oxidation with potassium permanganate were reduced. It was also shown that one polyene sequence was formed from each isolated double bond. [Pg.320]

The correlation of stability with the number of internal double bonds has been demonstrated by other workers [20,23,24]. In work reported by Lindeschmidt [25], this correlation was not observed. [Pg.320]

Dimsyl anion 88 is known to add to styrene, and to 1,1-diphenylethylene in the presence of a base, forming 3-arylpropyl methyl sulfoxides121. Treatment of ( )-3,3-dimethyl thiacyclo-oct-4-ene-l-oxide 89 with n-BuLi gave exo-4,4-dimethyl-2-thiacyclo-[3.3.0]octane 2-oxide 90, a bicyclic addition product of the internal double bond. A similar cyclization was observed in the reaction of 91 with n-BuLi122. [Pg.607]

As is die case for odier polycondensation reactions, internal interchange reactions are possible for ADMET, similar to diat of polyesters and polyamides.16 Interchange reactions involve a catalyst molecule on a polymer chain end reacting widi an internal double bond in another polymer chain. The result is two new polymer chains however, no change in the molecular weight distribution... [Pg.437]

Linear olefins (with terminal double bond or with internal double bond)... [Pg.5]

On one hand, /z-alkanes of the molecular range C10-C16 are important starting materials for the synthesis of anionic surfactants. It is possible to dehydrogenate these hydrocarbons to isomeric /z-olefins with internal double bonds olefins) [4], which are also important initial products for the synthesis of an-... [Pg.5]

The higher molecular weight unbranched C10-C18 n-olefins—not only a-olefins but also n-olefins with internal double bonds, so-called n-vj/-olefins—are important initial products for the manufacture of anionic surfactants, e.g., linear alkylbenzenes or olefinsulfonates. These linear C10-C18 olefins are manufactured technically by the following procedures ... [Pg.10]

Linear Olefins with Internal Double Bonds (n-y-Olefins)... [Pg.17]

Not only the linear Cl0-Cl8 a-olefins but also the linear C10-Cl8 olefins with internal double bonds, the so-called -v /-olefins, are of great importance in surfactant chemistry, n-a-Olefins and n-y-olefins have the same suitability for the manufacture of linear alkylbenzenes, the most important synthetic anionic surfactants, by alkylation of benzene. Nowadays medium molecular weight n- /-olefins are industrially produced by two processes the catalytic dehydrogenation of the corresponding n-alkanes [4,28] and the cometathesis of low and high molecular weight n-v /-olefins, obtained by double-bond isomerization of the isomeric n-a-olefins [29]. [Pg.17]

The cometathesis product contains 10-15% of the wanted C10-C13 - /-olefins, which are separated from the undesired olefins by fractional distillation. The first runnings and the tailing olefins are recycled into the metathesis reactor so that at least all of the ethylene oligomers are transformed into the wanted C10-C,3 n-olefins, with the olefins of course having internal double bonds. [Pg.18]

If cobalt carbonylpyridine catalyst systems are used, the formation of unbranched carboxylic acids is strongly favored not only by reaction of a-olefins but also by reaction of olefins with internal double bonds ( contrathermo-dynamic double-bond isomerization) [59]. The cobalt carbonylpyridine catalyst of the hydrocarboxylation reaction resembles the cobalt carbonyl-terf-phos-phine catalysts of the hydroformylation reaction. The reactivity of the cobalt-pyridine system in the hydrocarboxylation reaction is remarkable higher than the cobalt-phosphine system in the hydroformylation reaction, especially in the case of olefins with internal double bonds. This reaction had not found an industrial application until now. [Pg.31]

This has been found to be a general reaction for many types of olefins. It has also been applied to highly branched structures, such as 2,4,4-trimethyl-2-pen-tane and propylene trimers and tetramers [177], to unbranched olefins with internal double bonds, such as methyl oleate [178] and tricosane, and to a-ole-fins [179], In all cases the data indicate that the reaction occurs at the double... [Pg.588]

Nickel catalysts promote the hydroalumination of alkenes using trialkylalanes R3AI and dialkylalanes such as BU2AIH as the aluminum hydride sources [9, 29, 30, 33]. However, exhaustive studies of the range of substrates capable of hydroalumination with these reagents has not been carried out. Linear terminal alkenes like 1-octene react quantitatively with BU3AI at 0°C within 1-2 h in the presence of catalytic amounts of Ni(COD)2 [30]. Internal double bonds are inert under these conditions, whereas with 1,5-hexadiene cycHzation occurs. [Pg.59]

Diimide selectively reduces terminal over internal double bonds in polyunsaturated... [Pg.388]

Catalysts Temperature of polymerization (°C) Density of polymer Mn Number of methyls per 1000 C atoms Number of vinyls per 1000 C atoms Trans, internal double bonds per 1000 C atoms Number of methyls per chain Number of terminal double bonds per chain... [Pg.273]

A chromotrophic acid spot test for formaldehyde (23) was also negative for the polymer ozonolysis solution, while it was positive for a control solution containing formaldehyde equivalent to that expected in the experimental solution if one per cent of the double bonds were vinyl, i.e., polymerization via the internal double bond. [Pg.180]

The reduced reactivity of 5-methy1-1-hexene is consistent with the expected steric effect due to methyl substitution at the 5-carbon position. Apparently, the internal double bond in 5-methyl-l,4-hexadiene assists in its complexation at the active site(s) of the catalyst prior to its polymerization and thereby the "local concentration" of this monomer is higher than the feed concentration during copolymerization with 1-hexene. This view is consistent with the observation that the overall rates of polymerization, under the same conditions, are much lower for the system containing 5-methyl-1,4-hexadiene. [Pg.192]

Olefins react secondarily for isomerization and hydrogenation (on cobalt sites that are not active for chain growth lower scheme in Figure 9.15). There is a first reversible H-addition (at the alpha- or beta-C-atom of the double bond) to form an alkyl species, and a slow irreversible second H-addition to form the paraffin (lower scheme in Figure 9.15). Thus, double-bond shift and double-bond hydrogenation are interrelated by a common intermediate to produce olefins with internal double bonds or paraffins from the primary FT alpha-olefins. Experimental results1018 are presented in Figures 9.16 and 9.17. [Pg.175]


See other pages where Internal double bond is mentioned: [Pg.310]    [Pg.86]    [Pg.320]    [Pg.560]    [Pg.256]    [Pg.257]    [Pg.258]    [Pg.313]    [Pg.11]    [Pg.13]    [Pg.13]    [Pg.14]    [Pg.15]    [Pg.15]    [Pg.261]    [Pg.9]    [Pg.32]    [Pg.77]    [Pg.258]    [Pg.193]    [Pg.464]    [Pg.118]   
See also in sourсe #XX -- [ Pg.598 ]




SEARCH



Double internal

Internal bonds

Internal double bond polymerization

Polyethylene internal double bonds

© 2024 chempedia.info