Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Paper formaldehyde resins

Urea—formaldehyde resins are also used as mol ding compounds and as wet strength additives for paper products. Melamine—formaldehyde resins find use in decorative laminates, thermoset surface coatings, and mol ding compounds such as dinnerware. [Pg.497]

In recent years, synthetic polymeric pigments have been promoted as fillers for paper. Pigments that ate based on polystyrene [9003-53-6] latexes and on highly cross-linked urea—formaldehyde resins have been evaluated for this appHcation. These synthetic pigments are less dense than mineral fillers and could be used to produce lightweight grades of paper, but their use has been limited in the United States. [Pg.21]

Both urea— and melamine—formaldehyde resins are of low toxicity. In the uncured state, the amino resin contains some free formaldehyde that could be objectionable. However, uncured resins have a very unpleasant taste that would discourage ingestion of more than trace amounts. The molded plastic, or the cured resin on textiles or paper may be considered nontoxic. Combustion or thermal decomposition of the cured resins can evolve toxic gases, such as formaldehyde, hydrogen cyanide, and oxides of nitrogen. [Pg.333]

Melamine—formaldehyde resins may be used in paper which contacts aqueous and fatty foods according to 21 CFR 121.181.30. However, because a lower PEL has been estabUshed by OSHA, some mills are looking for alternatives. Approaches toward achieving lower formaldehyde levels in the resins have been reported (66,67) the efficacy of these systems needs to be estabUshed. Although alternative resins are available, significant changes in the papermaking operation would be required in order for them to be used effectively. [Pg.333]

The decorative plastic laminates widely used for countertops and cabinets are based on melamine—formaldehyde resin (see Laminates). Several layers of phenohc-saturated kraft paper are placed in a press and a sheet of a-ceUulose paper printed with the desired design and impregnated with melamine—formaldehyde resin is placed over them. Then a clear a-ceUulose sheet, similarly impregnated with the resin, is placed on top to form a clear, protective surface over the decorative sheet. The assembly is cured under heat and pressure up to 138°C and 10 MPa (1450 psi). A similar process is used to make wall paneling, but because the surfaces need not be as resistant to abrasion and wear, laminates for wall panels are cured under lower pressure, about 2 MPa (290 psi). [Pg.328]

Another significant end-use for polyamines is in preparation of paper wet-strength resins. These are polyamide, modified formaldehyde, and polyamine resins used to improve the physical strength of tissue, toweling, and packaging paper products. The cationic formaldehyde resins include both urea—formaldehyde and melamine—formaldehyde types (248,249). Cationic functionaHty is imparted by incorporation of DETA, TETA, and/or TEPA in... [Pg.47]

Although phenolic resins are too dark for use in the surface layers of decorative laminates these resins are employed in impregnating the core paper. In the.se cases a melamine-formaldehyde resin is used for impregnating the top decorative layer. Phenolic laminates have also been used in aircraft construction and in chemical plant. [Pg.658]

Decorative laminates have a core or base of Kraft paper impregnated with a phenolic resin. A printed pattern layer impregnated with a melamine-formaldehyde or urea-thiourea-formaldehyde resin is then laid on the core and on top of this a melamine resin-impregnated protective translucent outer sheet. The assembly is then cured at 125-150°C in multi-daylight presses in the usual way. [Pg.688]

Nitrile rubber is compatible with phenol-formaldehyde resins, resorcinol-formaldehyde resins, vinyl chloride resins, alkyd resins, coumarone-indene resins, chlorinated rubber, epoxies and other resins, forming compositions which can be cured providing excellent adhesives of high strength, high oil resistance and high resilience. On the other hand, NBR adhesives are compatible with polar adherends such as fibres, textiles, paper and wood. Specific formulations of NBR adhesives can be found in [12]. [Pg.658]

A reaction vessel explosion at BASF s resins plant in Cincinnati (July 19, 1990) killed one and injured 71. The BASF facility manufactures acrylic, alkyd, epoxy, and phenol-formaldehyde resins used as can and paper-cup liner coatings. The explosion occurred when a flammable solvent used to clean a reaction vessel vented into the plant and ignited. The cleaning solvent that was not properly vented to a condenser and separator, blew a pressure seal, and fdled the 80-year-old building with a white vapor cloud. [Pg.258]

Seventy years ago, nearly all resources for the production of commodities and many technical products were materials derived from natural textiles. Textiles, ropes, canvas, and paper were made of local natural fibers, such as flax and hemp. Some of them are still used today. In 1908, the first composite materials were applied for the fabrication of big quantities of sheets, tubes, and pipes in electrotechnical usage (paper or cotton as reinforcement in sheets made of phenol- or melamine-formaldehyde resins). In 1896, for example, airplane seats and fuel tanks were made of natural fibers with a small content of polymeric binders [1]. [Pg.787]

Phenol-formaldehyde resins are the oldest thermosetting polymers. They are produced by a condensation reaction between phenol and formaldehyde. Although many attempts were made to use the product and control the conditions for the acid-catalyzed reaction described by Bayer in 1872, there was no commercial production of the resin until the exhaustive work by Baekeland was published in 1909. In this paper, he describes the product as far superior to amber for pipe stem and similar articles, less flexible but more durable than celluloid, odorless, and fire-resistant. ° The reaction between phenol and formaldehyde is either base or acid catalyzed, and the polymers are termed resols (for the base catalyzed) and novalacs (for the acid catalyzed). [Pg.346]

In the meantime another development had decisively altered the outset situation plastics had been discovered and synthesized, among them also some acid-stable ones such as phenol-formaldehyde resin or poly(vinyl chloride) (PVC). These opened up new possibilities cellulose papers could be impregnated with phenol-formaldehyde resin solution and thus rendered sufficiently acid-stable, and sintered sheets from PVC powder were developed. Independent separators producers were founded, combining knowledge of the chemical industry with experience of the battery industry and thus accelerating the development process. [Pg.252]

For use from the size press it is necessary for the FBA to be compatible with the chosen size, such as starch, casein or urea-formaldehyde resin. Since sizes tend to be yellowish and to absorb ultraviolet radiation, brighteners are generally less effective in sized paper. [Pg.312]

Several other papers have appeared in the literature describing hyperbranched poly(siloxysilane)s [103], poly(amine)s [104], poly(phenylene sulfidejs [105], polycarbosilanes [106], phenol-formaldehyde resins [107], poly (aryl ether sul-fone)s [108], poly(alkoxysilanes) [109], and poly(lactoside)s [110] but are not further treated in this survey. [Pg.20]

The polymerization of phenols or aromatic amines is applied in resin manufacture and the removal of phenols from waste water. Polymers produced by HRP-catalyzed coupling of phenols in non-aqueous media are potential substitutes for phenol-formaldehyde resins [123,124], and the polymerized aromatic amines find applications as conductive polymers [112]. Phenols and their resins are pollutants in aqueous effluents derived from coal conversion, paper-making, production of semiconductor chips, and the manufacture of resins and plastics. Their transformation by peroxidase and hydrogen peroxide constitutes a convenient, mild and environmentally acceptable detoxification process [125-127]. [Pg.90]

Adding wet strength resins to increase the strength of the paper when wet. Urea-formaldehyde resins are typical. [Pg.408]

Urea- and melamine-formaldehyde resins are used as moldings, lacquers, and adhesives (for wood), also as textile additives (increased crease resistance) and paper additives (improved wet strength). [Pg.302]

COPOLYMERIZATION WITH PARTICIPATION OF MULTIMONOMERS Synthesis of various multimonomers and their copolymerization with styrene, acrylonitrile or acrylic acid was described in a set of papers. Most of the early work on the copolymerization of multimonomers with vinyl monomers employed p-cresyl formaldehyde resins, esterified by methacryloyl chloride or acryloyl chloride, as one of the comonomers, and a simple vinyl monomer such as styrene or acrylonitrile as the other monomer. [Pg.60]

Since the days of Bakeland many varieties and applications of phenol-formaldehyde resins have been found (1). In this paper we are concerned only with recent applications of functionally substituted phenol-formaldehyde-Novolak resins as applied to lithographic uses for micro-image fabrication. [Pg.339]

The first synthetic plastics were the phenol-formaldehyde resins introduced by Baekeland in 1907 [1], Melamine and urea also react with formaldehyde to form intermediate methylol compounds which condense to cross-linked polymers much like phenol-formaldehyde resins. Paper, cotton fabric, wood flour or other forms of cellulose have long been used to reinforce these methylol-functional polymers. Methylol groups react with hydroxyl groups of cellulose to form stable ether linkages to bond filler to polymers. Cellulose is so compatible with these resins that no one thought of an interface between them, and the term reinforced composites was not even used to describe these reinforced systems. [Pg.3]

Phenol-formaldehyde resins are used in the core assembly and in conjunction with the kraft paper give the characteristic brown colour to the back of the laminate. Features of these resins making them suitable for the purpose include ... [Pg.117]

Overlay Paper. Overlay paper is a-cellulose paper of high purity, with substance weight in the range 20 to 80 g m-2. An essential feature is the refractive index, which is virtually identical with that of melamine-formaldehyde resin hence, after lamination—when all the fibres of the paper are wetted and consolidated with resin devoid of air—the overlay becomes transparent. It forms a durable, hard, clear layer to protect the decorative print layer below. [Pg.118]

Core Papers. These commonly are kraft papers of substance weight between 80 and 260 g m-2, usually for impregnation with phenol-formaldehyde resins. [Pg.119]


See other pages where Paper formaldehyde resins is mentioned: [Pg.528]    [Pg.20]    [Pg.20]    [Pg.331]    [Pg.332]    [Pg.48]    [Pg.48]    [Pg.5]    [Pg.272]    [Pg.266]    [Pg.98]    [Pg.288]    [Pg.136]    [Pg.77]    [Pg.856]    [Pg.68]    [Pg.131]    [Pg.366]    [Pg.207]    [Pg.976]    [Pg.541]    [Pg.366]    [Pg.239]    [Pg.265]    [Pg.73]    [Pg.118]   
See also in sourсe #XX -- [ Pg.1035 ]




SEARCH



Formaldehyde resin

Paper phenol formaldehyde resins

Paper resins

© 2024 chempedia.info