Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High resilient

Commonly used isocyanates are toluene dhsocyanate, methylene diphenyl isocyanate, and polymeric isocyanates. Polyols used are macroglycols based on either polyester or polyether. The former [poly(ethylene phthalate) or poly(ethylene 1,6-hexanedioate)] have hydroxyl groups that are free to react with the isocyanate. Most flexible foam is made from 80/20 toluene dhsocyanate (which refers to the ratio of 2,4-toluene dhsocyanate to 2,6-toluene dhsocyanate). High-resilience foam contains about 80% 80/20 toluene dhsocyanate and 20% poly(methylene diphenyl isocyanate), while semi-flexible foam is almost always 100% poly(methylene diphenyl isocyanate). Much of the latter reacts by trimerization to form isocyanurate rings. [Pg.1022]

Its principal advantages are high resilience and good abrasion resistance. [Pg.1062]

Unmodified Modified Sheet Standard cushioning Carpet underlay High resilience type PVC b Liquid Sheet ... [Pg.410]

Processings and Properties. Polybutadiene is compounded similarly to SBR and vulcanised with sulfur. The high cis-1,4 type crystallizes poorly on stretching so it is not suitable as a "gum" stock but requires carbon black reinforcement. It is generally used for automotive tires in mixtures with SBR and natural mbber. Its low T (—OS " C) makes it an excellent choice for low temperature tire traction, and also leads to a high resilience (better than natural mbber) which ia turn results ia a lower heat build-up. Furthermore, the high i j -polybutadiene also has a high abrasion resistance, a plus for better tire tread wear. [Pg.469]

In addition to freedom from bottoming out , most people prefer a seat which effectively provides a soft surface with a firm interior. One measure of the relationship between such surface softness and inner support is the sag factor or support factor. In one commonly used test this is obtained by dividing the force required to compress a foam by 65% of its height by the force needed to obtain 25% sample compression. This generally increases with density but is typically <2.5 for a conventional slabstock foam but >2.5 for a high-resilience foam. [Pg.799]

There is also growing interest in multi-phase systems in which hard phase materials are dispersed in softer polyether diols. Such hard phase materials include polyureas, rigid polyurethanes and urea melamine formaldehyde condensates. Some of these materials yield high-resilience foams with load deflection characteristics claimed to be more satisfactory for cushioning as well as in some cases improving heat resistance and flame retardancy. [Pg.808]

Both side groups and carbon-carbon double bonds can be incorporated into the polymer structure to produce highly resilient rubbers. Two typical examples are polyisoprene and polychloroprene rubbers. On the other hand, the incorporation of polar side groups into the rubber structure imparts a dipolar nature which provides oil resistance to these rubbers. Oil resistance is not found in rubber containing only carbon and hydrogen atoms (e.g. natural rubber). Increasing the number of polar substituents in the rubber usually increases density, reduces gas permeability, increases oil resistance and gives poorer low-temperature properties. [Pg.580]

Nitrile rubber is compatible with phenol-formaldehyde resins, resorcinol-formaldehyde resins, vinyl chloride resins, alkyd resins, coumarone-indene resins, chlorinated rubber, epoxies and other resins, forming compositions which can be cured providing excellent adhesives of high strength, high oil resistance and high resilience. On the other hand, NBR adhesives are compatible with polar adherends such as fibres, textiles, paper and wood. Specific formulations of NBR adhesives can be found in [12]. [Pg.658]

Natural rubber was the only polymer for elastomer production until the advent of synthetics. Natural rubber, however, continues to maintain its competitive edge due mainly to the gain in properties such as high resilience, low hysteresis, low heat buildup, and excellent tack with mechanical properties achieved through the process of vulcanization [114-115]. The industry is said to be self-sufficient with a good technological base and is expected to compete successfully with synthetics because of the edge in properties mentioned above [116,117]. [Pg.417]

Natural rubber is a stereoregular polymer composed of isoprene units attached in a cis configuration. This arrangement gives the rubber high resilience and strength. [Pg.354]

Most accelerators used in the accelerated sulfur vulcanization of other high diene rubbers are not applicable to the metal oxide vulcanization of CR. An exception is the use of so-called mixed-curing system for CR, in which metal oxide and accelerated sulfur vulcanization are combined. Along with the metal oxides, TMTD, DOTG, and sulfur are used. This is a good method to obtain high resilience and dimensional stability. [Pg.432]

Elastomeric polypeptides are a class of very interesting biopolymers and are characterized by mbber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. Here, we focus on two elastomeric proteins and the recombinant polypeptides derived thereof. [Pg.72]

Polybutadiene is produced by solution polymerisation, and one important feature governing the performance of the resultant polymer is the cis 1,4, and 1, 2 vinyl contents. High cis 1,4 polymers (>90%) have a Tg around -90 °C, and hence exhibit excellent low temperature flexibility only exceeded by the phenyl silicones. They also exhibit excellent resilience and abrasion resistance unfortunately the high resilience gives poor wet grip in tyre treads, and hence this rubber finds limited use as the sole base for such compounds. [Pg.88]

Polybutadiene based compounds can be cured by sulphur, sulphur donor systems and peroxides. Less sulphur and a higher level of accelerators are required when compared to NR. The cure of polybutadiene by peroxides is highly efficient in that a large number of crosslinks are produced per free radical, the resultant highly crosslinked rubber exhibiting high resilience this factor is utilised in the manufacture of superballs . [Pg.88]

The work (3) confirmed the correctness of the decision not to enforce the use of flame retarded PU foam and showed that although high resilience PU foams and flame retarded PU foams themselves were more difficult to ignite, this advantage was often lost when they were used in furniture as fabric covered composites. Early flame retarded PU foams were more likely to produce greater smoke and in some circumstances could burn more rapidly than composites containing standard PU foam. [Pg.500]

Various UK government authorities and especially The Crown Suppliers were already "fire conscious" and further extended the use of fabrics of reduced flammability, barrier fabrics and barrier foams, with high resilience PU foams in their purchase specifications for upholstered furniture and bed assemblies for use in the Crown Estate, public buildings, hospitals etc. Typically, products were required to meet cigarette and No. 5 wooden crib sources see Table I when tested to Crown Suppliers Tests (5), (6). ... [Pg.500]

Cold cure" or high resilience PU foams tended to liquify before igniting were developed and gave good results in standard tests such as BS 4735(25) (similar to the discontinued ASTM D1692) but could still burn when used with flammable fabrics in furniture (Table IV). However they have been used most successfully in the UK in combination with flame retarded cotton interliners and fabrics of low flammability e.g. wool, nylon, FR cotton etc. and formed the basis of public area furniture used in the UK since the early 1970 s (Table V). [Pg.503]

Fabric Standard PU Foam High Resilience PU Foam High Resilience PU Foam FR Cotton Barrier Fabrics High Resilience PU Foam PU Barrier Foam ... [Pg.505]

These criteria were developed by the UK PU foam industry and were intended to differentiate the melamine or exfoliated graphite containing combustion modified PU foams from the standard, high resilience and flame retarded (chloro and bromo phosphate) containing PU foams (Table IV). This distinction was required because large scale burning tests of real arm chairs and furnished rooms had demonstrated the superiority of the combustion modified polyurethane foams. [Pg.511]

PEN is used in manufacturing electrochemical lithium ion batteries because it is dimensionally stable and highly resilient [54], It could replace polyethylenimine, which is currently used at unusually high temperatures to cure special inks. PEN is also useful in membrane touch switches (MTSs) where the circuit would be exposed to a high temperature, such as the domes for switches and seat sensors in automobiles. PEN is also particularly suited to a wide range of flexible heaters and low- to intermediate-voltage heaters, such as waterbed heaters and battery heaters. [Pg.353]

The resulting slate of polyols has been demonstrated in conventional flexible slabstock foam [143], viscoelastic foam [144], and high resiliency slabstock and molded foams [145],... [Pg.343]


See other pages where High resilient is mentioned: [Pg.1830]    [Pg.280]    [Pg.287]    [Pg.333]    [Pg.548]    [Pg.738]    [Pg.647]    [Pg.351]    [Pg.8]    [Pg.272]    [Pg.356]    [Pg.238]    [Pg.71]    [Pg.108]    [Pg.832]    [Pg.191]    [Pg.87]    [Pg.133]    [Pg.147]    [Pg.503]    [Pg.506]    [Pg.437]    [Pg.107]    [Pg.218]    [Pg.350]    [Pg.350]    [Pg.351]    [Pg.351]   
See also in sourсe #XX -- [ Pg.568 ]




SEARCH



Flexible slabstock foams high resilience

Foams high resiliency

High resilient foams

High-resilience flexible foams

Resiliency

© 2024 chempedia.info