Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines, aromatic polymerization

Primary aromatic amines react with aldehydes to form Schiff bases. Schiff bases formed from the reaction of lower aUphatic aldehydes, such as formaldehyde and acetaldehyde, with primary aromatic amines are often unstable and polymerize readily. Aniline reacts with formaldehyde in aqueous acid solutions to yield mixtures of a crystalline trimer of the Schiff base, methylenedianilines, and polymers. Reaction of aniline hydrochloride and formaldehyde also yields polymeric products and under certain conditions, the predominant product is 4,4 -methylenedianiline [101 -77-9] (26), an important intermediate for 4,4 -methylenebis(phenyhsocyanate) [101-68-8], or MDI (see Amines, aromatic amines, l thylenedianiline). [Pg.230]

Further study of the reaction has indicated that nitroanilines, as well as aminobenzoic acids, are not substantially converted into azo compounds, whereas polycyclic aromatic amines give polymeric products. [Pg.416]

Polymeric isocyanates - [AMINES - AMINES,AROMATIC - METHYLENEDIANILINE] (Vol 2)... [Pg.788]

This type of photoinitiating system has been studied carefully using a series of 6-alkoxy-2,4-diiodo-3-fluorones and 2-acyl- or 7-alkyl-2,4,5-triiodo-3-fluorones [117-120] as the primary light absorbers. The systems have been further evaluated as initiators for photopolymerization in the presence of a tertiary aromatic amine. Photoinitiated polymerization was triggered with an argon-ion (514.5 nm line) or He-Ne (632 nm line) laser. [Pg.3722]

Mn oxides are versatile oxidants. They can oxidize to Co, Cr to (chromate), As to As, and phenols and aromatic amines to polymeric products. Some of the organic degradation reactions are discussed in more detail in Chapter... [Pg.269]

FURYL METHANAL (98-01-1) Forms explosive mixture with air (flash point 140°F/ 60°C). Strong acids or strong bases may cause polymerization. Violent reaction with strong acids, alkalis, sodium bicarbonate. Incompatible with ammonia, aliphatic amines, alkanol-amines, aromatic amines, oxidizers. Attacks many plastics and coatings. [Pg.594]

Aqueous mineral acids react with BF to yield the hydrates of BF or the hydroxyfluoroboric acids, fluoroboric acid, or boric acid. Solution in aqueous alkali gives the soluble salts of the hydroxyfluoroboric acids, fluoroboric acids, or boric acid. Boron trifluoride, slightly soluble in many organic solvents including saturated hydrocarbons (qv), halogenated hydrocarbons, and aromatic compounds, easily polymerizes unsaturated compounds such as butylenes (qv), styrene (qv), or vinyl esters, as well as easily cleaved cycHc molecules such as tetrahydrofuran (see Furan derivatives). Other molecules containing electron-donating atoms such as O, S, N, P, etc, eg, alcohols, acids, amines, phosphines, and ethers, may dissolve BF to produce soluble adducts. [Pg.160]

This scheme eliminates the process of converting bis(etherimide)s to bis(ether anhydride)s. When polyetherimides are fusible the polymerization is performed in the melt, allowing the monamine to distill off. It is advantageous if the amino groups of diamines are more basic or nucleophilic than the by-product monoamine. Bisimides derived from heteroaromatic amines such as 2-arninopyridine are readily exchanged by common aromatic diamines (68,69). High molecular weight polyetherimides have been synthesized from various N,lSf -bis(heteroaryl)bis(etherimide)s. [Pg.403]

Poly(phenylene ether) Alloys. Poly(phenylene ether) resins (91), composed of phenoHc monomers, have a very high T. The commercial resins are based on 2,6-dimethylphenol. The resin is produced by oxidative polymerization in toluene solution over an amine catalyst (see also PoLYETPiERS, aromatic). [Pg.270]

Low surface energy substrates, such as polyethylene or polypropylene, are generally difficult to bond with adhesives. However, cyanoacrylate-based adhesives can be effectively utilized to bond polyolefins with the use of the proper primer/activa-tor on the surface. Primer materials include tertiary aliphatic and aromatic amines, trialkyl ammonium carboxylate salts, tetraalkyl ammonium salts, phosphines, and organometallic compounds, which are initiators for alkyl cyanoacrylate polymerization [33-36]. The primer is applied as a dilute solution to the polyolefin surface, solvent is allowed to evaporate, and the specimens are assembled with a small amount of the adhesive. With the use of primers, adhesive strength can be so strong that substrate failure occurs during the course of the shear tests, as shown in Fig. 11. [Pg.862]

Organic peroxide-aromatic tertiary amine system is a well-known organic redox system 1]. The typical examples are benzoyl peroxide(BPO)-N,N-dimethylani-line(DMA) and BPO-DMT(N,N-dimethyl-p-toluidine) systems. The binary initiation system has been used in vinyl polymerization in dental acrylic resins and composite resins [2] and in bone cement [3]. Many papers have reported the initiation reaction of these systems for several decades, but the initiation mechanism is still not unified and in controversy [4,5]. Another kind of organic redox system consists of organic hydroperoxide and an aromatic tertiary amine system such as cumene hydroperoxide(CHP)-DMT is used in anaerobic adhesives [6]. Much less attention has been paid to this redox system and its initiation mechanism. A water-soluble peroxide such as persulfate and amine systems have been used in industrial aqueous solution and emulsion polymerization [7-10], yet the initiation mechanism has not been proposed in detail until recently [5]. In order to clarify the structural effect of peroxides and amines including functional monomers containing an amino group, a polymerizable amine, on the redox-initiated polymerization of vinyl monomers and its initiation mechanism, a series of studies have been carried out in our laboratory. [Pg.227]

Qiu et al. [11] reported that the aromatic tertiary amine with an electron-rich group on the N atom would favor nucleophilic displacement and thus increase the rate of decomposition of diacyl peroxide with the result of increasing the rate of polymerization (Table 1). They also pointed out that in the MMA polymerization using organic peroxide initiator alone the order of the rate of polymerization Rp is as follows ... [Pg.228]

Besides aromatic tertiary amines, the aliphatic cyclic tertiary amines such as N-methyl(or ethyl) morpholine can also be used in coupling with BPO to enhance the Rp of MMA polymerization [20], Since the... [Pg.229]

Table 2 MMA Polymerization Initiated by BPO-Aromatic Tertiary Amine Systems... Table 2 MMA Polymerization Initiated by BPO-Aromatic Tertiary Amine Systems...
Route (1) is referred to as local excitation and route (2) as CTC excitation. It has been observed that the different routes bring about the polymerization of AN with different kinetic behaviors. A 365-nm light will irradiate the CTC only, and in this case the rate of polymerization for different aromatic tertiary amines descends in the following order ... [Pg.237]

Table 12 The Bulk Polymerization of AN Initiated by Aromatic Amines... Table 12 The Bulk Polymerization of AN Initiated by Aromatic Amines...
The well-known photopolymerization of acrylic monomers usually involves a charge transfer system with carbonyl compound as an acceptor and aliphatic tertiary amine, triethylamine (TEA), as a donor. Instead of tertiary amine such as TEA or DMT, Li et al. [89] investigated the photopolymerization of AN in the presence of benzophenone (BP) and aniline (A) or N-methylaniline (NMA) and found that the BP-A or BP-NMA system will give a higher rate of polymerization than that of the well-known system BP-TEA. Still, we know that secondary aromatic amine would be deprotonated of the H-atom mostly on the N-atom so we proposed the mechanism as follows ... [Pg.239]

The end group of the polymers, photoinitiated with aromatic amine with or without the presence of carbonyl compound BP, has been detected with absorption spectrophotometry and fluororescence spectrophotometry [90]. The spectra showed the presence of tertiary amino end group in the polymers initiated with secondary amine such as NMA and the presence of secondary amino end group in the polymers initiated with primary amine such as aniline. These results show that the amino radicals, formed through the deprotonation of the aminium radical in the active state of the exciplex from the primary or secondary aromatic amine molecule, are responsible for the initiation of the polymerization. [Pg.239]

It is also possible to prepare them from amino acids by the self-condensation reaction (3.12). The PAs (AABB) can be prepared from diamines and diacids by hydrolytic polymerization [see (3.12)]. The polyamides can also be prepared from other starting materials, such as esters, acid chlorides, isocyanates, silylated amines, and nitrils. The reactive acid chlorides are employed in the synthesis of wholly aromatic polyamides, such as poly(p-phenyleneterephthalamide) in (3.4). The molecular weight distribution (Mw/Mn) of these polymers follows the classical theory of molecular weight distribution and is nearly always in the region of 2. In some cases, such as PA-6,6, chain branching can take place and then the Mw/Mn ratio is higher. [Pg.150]

This reaction is simple and qualitative36 37 the diamine can be both an aromatic and an aliphatic diamine. With this method, even star-shaped PAs have been synthesized.37 Solution polymerization from acid chlorides and aliphatic diamines is more difficult due to the strong basicity of the aliphatic amine groups. Acid binders which have been used with aliphatic diamines are the tertiary amines with high kb values these include dimethylbenzylamine and diisopropylethylamine.4 38... [Pg.157]


See other pages where Amines, aromatic polymerization is mentioned: [Pg.315]    [Pg.864]    [Pg.662]    [Pg.270]    [Pg.1654]    [Pg.629]    [Pg.461]    [Pg.461]    [Pg.48]    [Pg.710]    [Pg.864]    [Pg.15]    [Pg.253]    [Pg.102]    [Pg.531]    [Pg.224]    [Pg.236]    [Pg.239]    [Pg.361]    [Pg.403]    [Pg.431]    [Pg.459]    [Pg.23]    [Pg.488]    [Pg.134]    [Pg.367]    [Pg.260]    [Pg.223]   
See also in sourсe #XX -- [ Pg.390 ]




SEARCH



Amines polymerizations

Aromatic amination

Aromatic amines

Aromatics amination

© 2024 chempedia.info