Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation, of ethylene

Ethylene can be oxidized to a variety of useful chemicals. The oxidation products depend primarily on the catalyst used and the reaction conditions. Ethylene oxide is the most important oxidation product of ethylene. Acetaldehyde and vinyl acetate are also oxidation products obtained from ethylene under special catalytic conditions. [Pg.189]

Ethylene oxide (EO) is a colorless gas that liquefies when cooled below 12°C. It is highly soluble in water and in organic solvents. [Pg.189]

Ethylene oxide is a precursor for many chemicals of great commercial importance, including ethylene glycols, ethanolamines, and alcohol ethoxylates. Ethylene glycol is one of the monomers for polyesters, the most widely-used synthetic fiber polymers. The current US production of EO is approximately 8.1 hillion pounds. [Pg.190]

The main route to ethylene oxide is oxygen or air oxidation of ethylene over a silver catalyst. The reaction is exothermic heat control is important  [Pg.190]

A concomitant reaction is the complete oxidation of ethylene to carhon dioxide and water  [Pg.191]

Oxidation of ethylene according to Eq. (9.2) occurs stoichiometrically. A catalytic oxidation is possible if palladium(O) is reoxidized immediately. This happens in the presence of oxidizing agents such as cupric and ferric chlorides ferric sulfate chromates heteropoly acids of phosphoric, molybdic, and vanadic acids peroxides and others. Benzoquinone is used by Moiseev et al. for their kinetic investigations [11]. Gaseous oxygen does not oxidize palladium black in a sufficiently short time. [Pg.145]

At first glance, it seems slightly strange that cupric ions should oxidize palladium in the zero oxidation state according to their oxidation potentials [31]. Evidently, chloride ions play an essential role through stabilization of Pd and Cu by com-plexing. Respective thermodynamic considerations are given in [19]. [Pg.146]

Comparing the reaction rate, that is, ethylene consumption with the pH value, both plotted against the mole ratio [Cu +]/([Cu ] -I- [Cu ])= [Cu +J/lCUjQj il.that is, the degree of oxidation of the catalyst solution, it can be demonstrated that a decline of the reaction rate corresponds to a decline of the pH value in a neutralization curve depending on the ratio Cl/Cu of the catalyst. In fact, this is consistent with the neutralization of the copper oxychloride. [Pg.146]

Cupric chloride is a very aggressive agent. In the Wacker reaction, it acts as a chlorinating agent (Eq. (9.26)). Thus, chloroacetaldehyde is the main by-product [Pg.146]


Technically, acetaldehyde is mainly made by the oxidation of ethylene using a CuCl2/PdCl2 catalyst system.. Although some acetic acid is still prepared by the catalytic oxidation of acetaldehyde, the main process is the catalytic oxidation of paraffins, usually -butane. [Pg.74]

Extensive studies on the Wacker process have been carried out in industrial laboratories. Also, many papers on mechanistic and kinetic studies have been published[17-22]. Several interesting observations have been made in the oxidation of ethylene. Most important, it has been established that no incorporation of deuterium takes place by the reaction carried out in D2O, indicating that the hydride shift takes place and vinyl alcohol is not an intermediate[l,17]. The reaction is explained by oxypailadation of ethylene, / -elimination to give the vinyl alcohol 6, which complexes to H-PdCl, reinsertion of the coordinated vinyl alcohol with opposite regiochemistry to give 7, and aldehyde formation by the elimination of Pd—H. [Pg.22]

Oxidation of ethylene in alcohol with PdCl2 in the presence of a base gives an acetal and vinyl ether[106,107], The reaction of alkenes with alcohols mediated by PdCl2 affords acetals 64 as major products and vinyl ethers 65 as minor products. No deuterium incorporation was observed in the acetal formed from ethylene and MeOD, indicating that hydride shift takes place and the acetal is not formed by the addition of methanol to methyl vinyl etherjlOS], The reaction can be carried out catalytically using CuClj under oxygen[28]. [Pg.31]

At one time acetaldehyde was prepared on an industrial scale by this method Modern methods involve direct oxidation of ethylene and are more economical... [Pg.381]

Acetaldehyde, first used extensively during World War I as a starting material for making acetone [67-64-1] from acetic acid [64-19-7] is currendy an important intermediate in the production of acetic acid, acetic anhydride [108-24-7] ethyl acetate [141-78-6] peracetic acid [79-21 -0] pentaerythritol [115-77-5] chloral [302-17-0], glyoxal [107-22-2], aLkylamines, and pyridines. Commercial processes for acetaldehyde production include the oxidation or dehydrogenation of ethanol, the addition of water to acetylene, the partial oxidation of hydrocarbons, and the direct oxidation of ethylene [74-85-1]. In 1989, it was estimated that 28 companies having more than 98% of the wodd s 2.5 megaton per year plant capacity used the Wacker-Hoechst processes for the direct oxidation of ethylene. [Pg.48]

Since 1960, the Hquid-phase oxidation of ethylene has been the process of choice for the manufacture of acetaldehyde. There is, however, stiU some commercial production by the partial oxidation of ethyl alcohol and hydration of acetylene. The economics of the various processes are strongly dependent on the prices of the feedstocks. Acetaldehyde is also formed as a coproduct in the high temperature oxidation of butane. A more recently developed rhodium catalyzed process produces acetaldehyde from synthesis gas as a coproduct with ethyl alcohol and acetic acid (83—94). [Pg.51]

Oxidation of Ethylene. In 1894 F. C. Phillips observed the reaction of ethylene [74-85-17 in an aqueous paHadium(II) chloride solution to form acetaldehyde. [Pg.51]

The direct liquid phase oxidation of ethylene was developed in 1957—1959 by Wackei-Chemie and Faibwerke Hoechst in which the catalyst is an aqueous solution of PdClj and CuCl (86). [Pg.51]

From Acetylene. Although acetaldehyde has been produced commercially by the hydration of acetylene since 1916, this procedure has been almost completely replaced by the direct oxidation of ethylene. In the hydration process, high purity acetylene under a pressure of 103.4 kPa (15 psi) is passed into a vertical reactor containing a mercury catalyst dissolved in 18—25% sulfuric acid at 70—90°C (see Acetylene-DERIVED chemicals). [Pg.52]

Bromoacetic acid can be prepared by the bromination of acetic acid in the presence of acetic anhydride and a trace of pyridine (55), by the HeU-VoUiard-Zelinsky bromination cataly2ed by phosphoms, and by direct bromination of acetic acid at high temperatures or with hydrogen chloride as catalyst. Other methods of preparation include treatment of chloroacetic acid with hydrobromic acid at elevated temperatures (56), oxidation of ethylene bromide with Aiming nitric acid, hydrolysis of dibromovinyl ether, and air oxidation of bromoacetylene in ethanol. [Pg.90]

Many catalytic systems have been described acidic solutions of mercuric salts are the most generally used. This process has long been superseded by more economical routes involving oxidation of ethylene or other hydrocarbons. [Pg.102]

In the early versions, ethylene cyanohydrin was obtained from ethylene chlorohydrin and sodium cyanide. In later versions, ethylene oxide (from the dkect catalytic oxidation of ethylene) reacted with hydrogen cyanide in the presence of a base catalyst to give ethylene cyanohydrin. This was hydrolyzed and converted to acryhc acid and by-product ammonium acid sulfate by treatment with about 85% sulfuric acid. [Pg.155]

The direct oxidation of ethylene is used to produce acetaldehyde (qv) ia the Wacker-Hoechst process. The catalyst system is an aqueous solution of palladium chloride and cupric chloride. Under appropriate conditions an olefin can be oxidized to form an unsaturated aldehyde such as the production of acroleia [107-02-8] from propjiene (see Acrolein and derivatives). [Pg.472]

Ethylene oxide is a coproduct, probably formed by the reaction of ethylene and HOO (124—126). Chain branching also occurs through further oxidation of ethylene hydroxyl radicals are the main chain centers of propagation (127). [Pg.341]

Ethylene Glycol Process. Oxahc acid is also prepared by the nitric acid oxidation of ethylene glycol (15—21), and the process is basically the same as in the case of carbohydrates except for the absence of the hydrolyzer (see Eig. 1). In this process, ethylene glycol is oxidized in a mixture of... [Pg.457]

Ca.ta.lysis, The most important iadustrial use of a palladium catalyst is the Wacker process. The overall reaction, shown ia equations 7—9, iavolves oxidation of ethylene to acetaldehyde by Pd(II) followed by Cu(II)-cataly2ed reoxidation of the Pd(0) by oxygen (204). Regeneration of the catalyst can be carried out in situ or ia a separate reactor after removing acetaldehyde. The acetaldehyde must be distilled to remove chloriaated by-products. [Pg.183]

A process similar to the Wacker process has been apphed for the oxidation of ethylene with acetic acid to give vinyl acetate, but now the principal apphcations are with a soHd catalyst. [Pg.168]

Ethylene Oxidation to Ethylene Oxide. A thoroughly investigated reaction catalyzed by a supported metal is the commercially appHed partial oxidation of ethylene to give ethylene oxide (90). The desired reaction is the formation of ethylene oxide, ie, epoxidation the following reaction scheme is a good approximation ... [Pg.181]

Catalyst Selectivity. Selectivity is the property of a catalyst that determines what fraction of a reactant will be converted to a particular product under specified conditions. A catalyst designer must find ways to obtain optimum selectivity from any particular catalyst. For example, in the oxidation of ethylene to ethylene oxide over metallic silver supported on alumina, ethylene is converted both to ethylene oxide and to carbon dioxide and water. In addition, some of the ethylene oxide formed is lost to complete oxidation to carbon dioxide and water. The selectivity to ethylene oxide in this example is defined as the molar fraction of the ethylene converted to ethylene oxide as opposed to carbon dioxide. [Pg.193]

Partial Oxidation of Ethylene to Ethylene Oxide. About 3.3 million metric tons of ethylene oxide were produced worldwide in 1988. Of this, about 70% was converted into ethylene glycol, and the balance went into detergents and other appHcations. An excellent review of ethylene oxide synthesis has been written (66). [Pg.202]

Ethylene oxide (qv) was once produced by the chlorohydrin process, but this process was slowly abandoned starting in 1937 when Union Carbide Corp. developed and commercialized the silver-catalyzed air oxidation of ethylene process patented in 1931 (67). Union Carbide Corp. is stiU. the world s largest ethylene oxide producer, but most other manufacturers Hcense either the Shell or Scientific Design process. Shell has the dominant patent position in ethylene oxide catalysts, which is the result of the development of highly effective methods of silver deposition on alumina (29), and the discovery of the importance of estabUshing precise parts per million levels of the higher alkaU metal elements on the catalyst surface (68). The most recent patents describe the addition of trace amounts of rhenium and various Group (VI) elements (69). [Pg.202]

Equation 1 is referred to as the selective reaction, equation 2 is called the nonselective reaction, and equation 3 is termed the consecutive reaction and is considered to proceed via isomerization of ethylene oxide to acetaldehyde, which undergoes rapid total combustion under the conditions present in the reactor. Only silver has been found to effect the selective partial oxidation of ethylene to ethylene oxide. The maximum selectivity for this reaction is considered to be 85.7%, based on mechanistic considerations. The best catalysts used in ethylene oxide production achieve 80—84% selectivity at commercially useful ethylene—oxygen conversion levels (68,69). [Pg.202]

Dehydrochlorination to Epoxides. The most useful chemical reaction of chlorohydrins is dehydrochlotination to form epoxides (oxkanes). This reaction was first described by Wurtz in 1859 (12) in which ethylene chlorohydria and propylene chlorohydria were treated with aqueous potassium hydroxide [1310-58-3] to form ethylene oxide and propylene oxide, respectively. For many years both of these epoxides were produced industrially by the dehydrochlotination reaction. In the past 40 years, the ethylene oxide process based on chlorohydria has been replaced by the dkect oxidation of ethylene over silver catalysts. However, such epoxides as propylene oxide (qv) and epichl orohydrin are stiU manufactured by processes that involve chlorohydria intermediates. [Pg.72]

For many years ethylene chlorohydrin was manufactured on a large iadustrial scale as a precursor to ethylene oxide, but this process has been almost completely displaced by the direct oxidation of ethylene to ethylene oxide over silver catalysts. However, siace other commercially important epoxides such as propylene oxide and epichlorohydrin cannot be made by direct oxidation of the parent olefin, chlorohydrin iatermediates are stiU important ia the manufacture of these products. [Pg.73]

Viayl acetate [108-05-4] is obtained by vapor-phase oxidation of ethylene with acetic acid. Acetic acid is obtained by oxidation of acetaldehyde. [Pg.433]

Ethylene oxide [75-21-8] was first prepared in 1859 by Wurt2 from 2-chloroethanol (ethylene chlorohydrin) and aqueous potassium hydroxide (1). He later attempted to produce ethylene oxide by direct oxidation but did not succeed (2). Many other researchers were also unsuccesshil (3—6). In 1931, Lefort achieved direct oxidation of ethylene to ethylene oxide using a silver catalyst (7,8). Although early manufacture of ethylene oxide was accompHshed by the chlorohydrin process, the direct oxidation process has been used almost exclusively since 1940. Today about 9.6 x 10 t of ethylene oxide are produced each year worldwide. The primary use for ethylene oxide is in the manufacture of derivatives such as ethylene glycol, surfactants, and ethanolamines. [Pg.450]

To prevent further oxidation of ethylene oxide, the ethylene conversion of the commercial processes is typically between 10 and 20%. [Pg.455]

In addition to ethylene oxide, carbon dioxide, and water, small quantities of acetaldehyde and traces of formaldehyde are also produced in the process. They generally total less than 0.2% of the ethylene oxide formed. Acetaldehyde is most likely formed by isomerization of ethylene oxide, whereas formaldehyde is most likely formed by direct oxidation of ethylene (108). [Pg.455]

Fig. 1. Oil-cooled reactor for the oxidation of ethylene to ethylene oxide. Fig. 1. Oil-cooled reactor for the oxidation of ethylene to ethylene oxide.
Unsteady-State Direct Oxidation Process. Periodic iatermption of the feeds can be used to reduce the sharp temperature gradients associated with the conventional oxidation of ethylene over a silver catalyst (209). Steady and periodic operation of a packed-bed reactor has been iavestigated for the production of ethylene oxide (210). By periodically varyiag the inlet feed concentration of ethylene or oxygen, or both, considerable improvements ia the selectivity to ethylene oxide were claimed. [Pg.461]

The manufacture and uses of oxiranes are reviewed in (B-80MI50500, B-80MI50501). The industrially most important oxiranes are oxirane itself (ethylene oxide), which is made by catalyzed air-oxidation of ethylene (cf. Section 5.05.4.2.2(f)), and methyloxirane (propylene oxide), which is made by /3-elimination of hydrogen chloride from propene-derived 1-chloro-2-propanol (cf. Section 5.05.4.2.1) and by epoxidation of propene with 1-phenylethyl hydroperoxide cf. Section 5.05.4.2.2(f)) (79MI50501). [Pg.118]

The Wacker process for the oxidation of ethylene to acetaldehyde with PdCb/CuCb at 100°C (212°F) with 95 percent yield and 95 to 99 percent conversion per pass. [Pg.2092]

Dehydrogenation processes in particular have been studied, with conversions in most cases well beyond thermodynamic equihbrium Ethane to ethylene, propane to propylene, water-gas shirt reaction CO -I- H9O CO9 + H9, ethylbenzene to styrene, cyclohexane to benzene, and others. Some hydrogenations and oxidations also show improvement in yields in the presence of catalytic membranes, although it is not obvious why the yields should be better since no separation is involved hydrogenation of nitrobenzene to aniline, of cyclopentadiene to cyclopentene, of furfural to furfuryl alcohol, and so on oxidation of ethylene to acetaldehyde, of methanol to formaldehyde, and so on. [Pg.2098]

These enable temperature control with built-in exchangers between the beds or with pumparound exchangers. Converters for ammonia, 80.3, cumene, and other processes may employ as many as five or six beds in series. The Sohio process for vapor-phase oxidation of propylene to acrylic acid uses hvo beds of bismuth molybdate at 20 to 30 atm (294 to 441 psi) and 290 to 400°C (554 to 752°F). Oxidation of ethylene to ethylene oxide also is done in two stages with supported... [Pg.2102]

Ethylene oxide secondary oxidation with C-tagged ethylene oxide, to clarify the source of CO2, was done at Union Carbide but not published. This was about 10 years before the publication of Happel (1977). With very limited radioactive supply only a semi-quantitative result could be gained but it helped the kinetic modeling work. It became clear that most CO2 comes from ethylene directly and only about 20% from the secondary oxidation of ethylene oxide. [Pg.156]


See other pages where Oxidation, of ethylene is mentioned: [Pg.193]    [Pg.23]    [Pg.559]    [Pg.53]    [Pg.69]    [Pg.362]    [Pg.182]    [Pg.417]    [Pg.402]    [Pg.168]    [Pg.454]    [Pg.455]    [Pg.459]    [Pg.459]    [Pg.2097]    [Pg.130]   
See also in sourсe #XX -- [ Pg.9 , Pg.370 , Pg.371 ]

See also in sourсe #XX -- [ Pg.98 ]

See also in sourсe #XX -- [ Pg.92 , Pg.93 ]

See also in sourсe #XX -- [ Pg.14 , Pg.102 ]

See also in sourсe #XX -- [ Pg.50 , Pg.196 , Pg.481 ]

See also in sourсe #XX -- [ Pg.316 ]

See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.77 , Pg.80 , Pg.440 ]

See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Acid of ethylene oxide

Acid-Catalyzed Ring Opening of Ethylene Oxide

Anionic polymerization of ethylene oxide

Application of the Oxo Reaction to Anhydro Sugars Having an Ethylene Oxide Ring

Applications of Ethylene Oxide

Are Gases Diluted for the Oxidation of Ethylene

Block copolymers of ethylene and propylene oxide

Commercial Production of Ethylene Oxide

Condensation of ethylene oxide

Dipole moment of ethylene oxide

Direct Oxidation of Ethylene

Handling of ethylene oxide

Inhalation of ethylene oxide

Kinetics of ethylene oxidations

Living anionic polymerization of ethylene oxide

Oxidation of Ethylene to 2-Chloroethanol

Oxidation of ethylene and propylene

Oxidative carbonylation of ethylene

Palladium catalyzed oxidations of ethylene

Photodegradation and Oxidation of Poly (ethylene terephthalate) (PET)

Polymerization of ethylene oxide

Rate of ethylene oxidations

Reaction of ethylene oxidations

Selective oxidation of ethylene

The oxidation of ethylene to acetaldehyde

Wacker oxidation of ethylene

Wacker oxidation of ethylene to acetaldehyde

© 2024 chempedia.info