Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction nonselective

Uses. The largest usage of PCl is to produce phosphonic acid, H PO, which in reaction with iminodiacetic acid and formaldehyde forms a glyphosate intermediate that is decarboxymethylated to glyphosate, an effective nonselective herbicide (see Herbicides). Phosphoms trichloride is also a convenient chlorinating reagent for producing various acyl and alkyl chlorides. [Pg.368]

Trichloroacetone [921-03-9] (13a) is prepared by chlorination of acetone. The reaction is nonselective and the required compound is isolated by distillation. The selectivity has been improved by catalyzing the reaction with iodine (31). [Pg.38]

Steam Cracking. Steam cracking is a nonselective process that produces many products from a variety of feedstocks by free-radical reactions. An excellent treatise on the fundamentals of manufacturing ethylene has been given (44). Eeedstocks range from ethane on the light end to heavy vacuum gas oil on the heavy end. All produce the same product slate but in different amounts depending on the feedstock. [Pg.366]

Equation 1 is referred to as the selective reaction, equation 2 is called the nonselective reaction, and equation 3 is termed the consecutive reaction and is considered to proceed via isomerization of ethylene oxide to acetaldehyde, which undergoes rapid total combustion under the conditions present in the reactor. Only silver has been found to effect the selective partial oxidation of ethylene to ethylene oxide. The maximum selectivity for this reaction is considered to be 85.7%, based on mechanistic considerations. The best catalysts used in ethylene oxide production achieve 80—84% selectivity at commercially useful ethylene—oxygen conversion levels (68,69). [Pg.202]

Nonselective catalytic reduction systems are often referred to as three-way conversions. These systems reduce NO, unbumed hydrocarbon, and CO simultaneously. In the presence of the catalyst, the NO are reduced by the CO resulting in N2 and CO2 (37). A mixture of platinum and rhodium has been generally used to promote this reaction (37). It has also been reported that a catalyst using palladium has been used in this appHcation (1). The catalyst operation temperature limits are 350 to 800°C, and 425 to 650°C are the most desirable. Temperatures above 800°C result in catalyst sintering (37). Automotive exhaust control systems are generally NSCR systems, often shortened to NCR. [Pg.512]

The photolytic and thermolytic decomposition of azides in the presence of olefins has been applied to aziridine synthesis. However, only a limited number of steroid aziridines have been prepared in this manner. The patent literature reports the use of cyanogen azide at ca. 50° for 24 hours in ethyl acetate for the preparation of an A-nor- and a B-norsteroidal aziridine. The addition is believed to proceed via a triazoline. The reaction of cholest-2-ene with ethyl azidoformate takes place in a nonselective manner to produce a mixture of substances, including C—H insertion products. [Pg.30]

Nonselective attacks at carbon bonded with nitro group and carbon bonded with azoxy group were observed in reactions of 239 with bases in anhydrous acetonitrile (Scheme 161) (98CEJ1023). Reaction of 4,4 -dinitroazoxyfurazan occurred in a similar way (000HAC48). [Pg.147]

The noncatalytic oxidation of propane in the vapor phase is nonselec-tive and produces a mixture of oxygenated products. Oxidation at temperatures below 400°C produces a mixture of aldehydes (acetaldehyde and formaldehyde) and alcohols (methyl and ethyl alcohols). At higher temperatures, propylene and ethylene are obtained in addition to hydrogen peroxide. Due to the nonselectivity of this reaction, separation of the products is complex, and the process is not industrially attractive. [Pg.171]

Although cat cracking reactions are predominantly catalytic, some nonselective thermal cracking reactions do take place. The two processes proceed via different chemistry. The distribution of products clearly confirms that both reactions take place, but that catalytic reactions predominate. [Pg.136]

Reduction of the catalyst/hydrocarbon time in the riser, coupled with the elimination of post-riser cracking, reduces the saturation of the already produced olefins and allows the refiner to increase the reaction severity. The actions enhance the olefin yields and still operate within the wet gas compressor constraints. Elimination of post-riser residence time (direct connection of the reactor cyclones to the riser) or reducing the temperature in the dilute phase virtually eliminates undesired thermal and nonselective cracking. This reduces dry gas and diolefin yields. [Pg.186]

Nickel in the feed is deposited on the surface of the catalyst, promoting undesirable dehydrogenation and condensation reactions. These nonselective reactions increase gas and coke production at the expense of gasoline and other valuable liquid products. The deleterious effects of nickel poisoning can be reduced by the use of antimony passivation. [Pg.325]

The highly reactive species methylene inserts into C—H bonds,both aliphatic and aromatic,though with aromatic compounds ring expansion is also possible (see 15-62). This version of the reaction is useless for synthetic purposes because of its nonselectivity (see p. 248). This contrasts with the metal carbene insertion reaction, which can be highly selective, and is very useful in synthesis. Alkylcarbenes usually rearrange rather than give insertion (p. 249), but, when this is impossible. [Pg.789]

Tec and rn decrease when the carbon adsorption energy increases. Volcano-type behavior of the selectivity to coke formation is found when the activation energy of C-C bond formation decreases faster with increasing metal-carbon bond energy than with the rate of methane formation. Equation (1.16b) indicates that the rate of the nonselective C-C bond forming reaction is slow when Oc is high and when the metal-carbon bond is so strong that methane formation exceeds the carbon-carbon bond formation. The other extreme is the case of very slow CO dissociation, where 0c is so small that the rate of C-C bond formation is minimized. [Pg.13]

The intramolecular Diels-Alder reaction of 23-1 carried out under LiC104 catalysis is rather nonselective. Use a molecular mechanics program to assess the energies of the competing TSs and products. Are the results in agreement with the experimental outcome ... [Pg.617]

These reactions have very low activation energies when the intermediate is a free carbene. Intermolecular insertion reactions are inherently nonselective. The course of intramolecular reactions is frequently controlled by the proximity of the reacting groups.113 Carbene intermediates can also be involved in rearrangement reactions. In the sections that follow we also consider a number of rearrangement reactions that probably do not involve carbene intermediates, but lead to transformations that correspond to those of carbenes. [Pg.905]

The use of oxygen-containing dienophiles such as enol ethers, silyl enol ethers, or ketene acetals has received considerable attention. Yoshikoshi and coworkers have developed the simple addition of silyl enol ethers to nitroalkenes. Many Lewis acids are effective in promoting the reaction, and the products are converted into 1,4-dicarbonyl compounds after hydrolysis of the adducts (see Section 4.1.3 Michael addition).156 The trimethylsilyl enol ether of cyclohexanone reacts with nitrostyrenes in the presence of titanium dichloride diisopropoxide [Ti(Oi-Pr)2Cl2], as shown in Eq. 8.99.157 Endo approach (with respect to the carbocyclic ring) is favored in the presence of Ti(Oi-Pr)2Cl2. Titanium tetrachloride affords the nitronates nonselectively. [Pg.276]

Compound 132 was formed from 0,0-diphenyldiamine with hexaethyltriamide of phosphorus acid (HEPA), as outlined in Scheme 9. This reaction was found to be nonselective and dependent on the reaction conditions employed. Heating the reaction mixture to 90-100 °C without solvent for an hour resulted in a mixture that upon sulfurization yielded compounds 132 and 133 <1997PS(123)89>. When the above reaction was carried out in xylene and heated to 120-130 °C, compound 134 was formed. Equilibrium was established between compound 134 and the dimer, compound 135, in a ratio of 3 2 (Equation 12). [Pg.543]

When photobiotin is irradiated in the presence of DNA the reaction process nonselectively couples a biotin label to every 100-200 base residues. The result is an oligonucleotide probe detectable by the use of (strept)avidin conjugates. The uses of photobiotin for DNA or RNA modification are summarized in Chapter 11, Section 4. [Pg.987]

Atom economy is a goal only relatively recently understood. If all the atoms in the reactants are found in the desired product, we say that there is excellent atom economy. However, in many chemical reactions additional products are formed containing some of the atoms of the reactants. This is true in displacement and elimination reactions. It is also true if the reaction is not perfectly selective, and additional undesired products are formed. In most cases, the extra chemicals produced in displacement or elimination reactions or in nonselective reactions must be removed, and disposing of them adds cost and the potential for environmental problems (see Chapter 9 for further discussion of related matters). [Pg.25]


See other pages where Reaction nonselective is mentioned: [Pg.389]    [Pg.871]    [Pg.389]    [Pg.871]    [Pg.350]    [Pg.563]    [Pg.211]    [Pg.36]    [Pg.223]    [Pg.463]    [Pg.258]    [Pg.36]    [Pg.185]    [Pg.789]    [Pg.288]    [Pg.217]    [Pg.98]    [Pg.102]    [Pg.283]    [Pg.201]    [Pg.536]    [Pg.106]    [Pg.25]    [Pg.187]    [Pg.105]    [Pg.95]    [Pg.262]    [Pg.324]    [Pg.1032]    [Pg.105]    [Pg.49]    [Pg.383]    [Pg.570]   
See also in sourсe #XX -- [ Pg.12 , Pg.15 , Pg.117 , Pg.148 ]




SEARCH



Nonselective

Nonselectivity

© 2024 chempedia.info