Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid of ethylene oxide

Transition state for attack by water on conjugate acid of ethylene oxide... [Pg.682]

L-2-oxothiazolidine-4-carboxylic acid, on the urinary elimination of mercapturic acids of ethylene oxide, dibromoethane, and acrylonitrile A dose-effect study. Can J Physiol Pharmacol 67 207-212. [Pg.120]

HOCHj CHjOH. Colourless, odourless, rather viscous hygroscopic liquid having a sweet taste, b.p. 197 C. Manufactured from ethylene chlorohydrin and NaHC03 solution, or by the hydration of ethylene oxide with dilute sulphuric acid or water under pressure at 195°C. Used in anti-freezes and coolants for engines (50 %) and in manufacture of polyester fibres (e.g. Terylene) and in the manufacture of various esters used as plasticizers. U.S. production 1979 1 900 000 tonnes. [Pg.139]

Reactions of the 2-amino-4,5-substituted thiazole (52) in acetic acid with ethylene oxide has been reported to give the N-exocyclic disubstitution product (S3) (201) in a 40% yield (Scheme 38). The reactive species in this reaction is probably the carbocation generated in acetic acid by ethvlene oxide. [Pg.38]

As we ve just seen nucleophilic ring opening of ethylene oxide yields 2 substituted derivatives of ethanol Those reactions involved nucleophilic attack on the carbon of the ring under neutral or basic conditions Other nucleophilic ring openings of epoxides like wise give 2 substituted derivatives of ethanol but either involve an acid as a reactant or occur under conditions of acid catalysis... [Pg.681]

FIGURE 16 6 The mecha nism for the acid catalyzed nucleophilic ring opening of ethylene oxide by water... [Pg.682]

Hydroxyethyi and 2-hydroxypropyl acrylates are prepared by the addition of ethylene oxide or propylene oxide to acryhc acid (104,105). [Pg.156]

Detergents may be produced by the chemical reaction of fats and fatty acids with polar materials such as sulfuric or phosphoric acid or ethylene oxide. Detergents emulsify oil and grease because of their abiUty to reduce the surface tension and contact angle of water as well as the interfacial tension between water and oil. Recent trends in detergents have been to lower phosphate content to prevent eutrification of lakes when detergents are disposed of in municipal waste. [Pg.135]

Nonreactive additive flame retardants dominate the flexible urethane foam field. However, auto seating appHcations exist, particularly in Europe, for a reactive polyol for flexible foams, Hoechst-Celanese ExoHt 413, a polyol mixture containing 13% P and 19.5% Cl. The patent beHeved to describe it (114) shows a reaction of ethylene oxide and a prereacted product of tris(2-chloroethyl) phosphate and polyphosphoric acid. An advantage of the reactive flame retardant is avoidance of windshield fogging, which can be caused by vapors from the more volatile additive flame retardants. [Pg.479]

Although catalytic hydration of ethylene oxide to maximize ethylene glycol production has been studied by a number of companies with numerous materials patented as catalysts, there has been no reported industrial manufacture of ethylene glycol via catalytic ethylene oxide hydrolysis. Studied catalysts include sulfonic acids, carboxyUc acids and salts, cation-exchange resins, acidic zeoHtes, haUdes, anion-exchange resins, metals, metal oxides, and metal salts (21—26). Carbon dioxide as a cocatalyst with many of the same materials has also received extensive study. [Pg.359]

Functional Monomers. Hydroxy functional methacrylates ate accessible by the reaction of methacryhc acid and ethylene oxide or ptopjiene oxide in the presence of chromium (61), iron (62), or ion-exchange catalysts (63). [Pg.248]

When equal amounts of solutions of poly(ethylene oxide) and poly(acryhc acid) ate mixed, a precipitate, which appears to be an association product of the two polymers, forms immediately. This association reaction is influenced by hydrogen-ion concentration. Below ca pH 4, the complex precipitates from solution. Above ca pH 12, precipitation also occurs, but probably only poly(ethylene oxide) precipitates. If solution viscosity is used as an indication of the degree of association, it appears that association becomes mote pronounced as the pH is reduced toward a lower limit of about four. The highest yield of insoluble complex usually occurs at an equimolar ratio of ether and carboxyl groups. Studies of the poly(ethylene oxide)—poly(methacryhc acid) complexes indicate a stoichiometric ratio of three monomeric units of ethylene oxide for each methacrylic acid unit. [Pg.342]

Ethylene oxide adds to the bis(2-hydtoxyethyl) teitiaiy amine in a random fashion where x y y = n y2. Ethoxylated amines, varying from strongly cationic to very weakly cationic in character, are available containing up to 50 mol of ethylene oxide/mol of amine. Ethyoxylated fatty amine quaternaries, cationic surfactants (both chloride from methyl chloride and acetate from acetic acid), ate also available. [Pg.219]

Ethoxyl tion. Base-cataly2ed ethoxylation of aUphatic alcohols, alkylphenols, and fatty acids can be broken down into two stages formation of a monoethoxy adduct and addition of ethylene oxide to the monoadduct to form the polyoxyethylene chain. The sequence of reactions is shown in equations 20—22 ... [Pg.246]

Carboxylic Acid Esters. In the carboxyflc acid ester series of surfactants, the hydrophobe, a naturally occurring fatty acid, is solubilized with the hydroxyl groups of polyols or the ether and terminal hydroxyl groups of ethylene oxide chains. [Pg.248]

Eatty acid ethoxylates are used extensively in the textile industry as emulsifiers for processing oils, antistatic agents (qv), softeners, and fiber lubricants, and as detergents in scouring operations. They also find appHcation as emulsifiers in cosmetic preparations and pesticide formulations. Eatty acid ethoxylates are manufactured either by alkaH-catalyzed reaction of fatty acids with ethylene oxide or by acid-catalyzed esterification of fatty acids with preformed poly(ethylene glycol). Deodorization steps are commonly incorporated into the manufacturing process. [Pg.250]

Salts of neodecanoic acid have been used in the preparation of supported catalysts, such as silver neodecanoate for the preparation of ethylene oxide catalysts (119), and the nickel soap in the preparation of a hydrogenation catalyst (120). Metal neodecanoates, such as magnesium, lead, calcium, and zinc, are used to improve the adherence of plasticized poly(vinyl butyral) sheet to safety glass in car windshields (121). Platinum complexes using neodecanoic acid have been studied for antitumor activity (122). Neodecanoic acid and its esters are used in cosmetics as emoUients, emulsifiers, and solubilizers (77,123,124). Zinc or copper salts of neoacids are used as preservatives for wood (125). [Pg.106]

The chlorohydrin process (24) has been used for the preparation of acetyl-P-alkylcholine chloride (25). The preparation of salts may be carried out mote economically by the neutralization of choline produced by the chlorohydrin synthesis. A modification produces choline carbonate as an intermediate that is converted to the desired salt (26). The most practical production procedure is that in which 300 parts of a 20% solution of trimethyl amine is neutralized with 100 parts of concentrated hydrochloric acid, and the solution is treated for 3 h with 50 parts of ethylene oxide under pressure at 60°C (27). [Pg.101]

Virtually all of the organo derivatives of CA are produced by reactions characteristic of a cycHc imide, wherein isocyanurate nitrogen (frequendy as the anion) nucleophilically attacks a positively polarized carbon of the second reactant. Cyanuric acid and ethylene oxide react neady quantitatively at 100°C to form tris(2-hydroxyethyl)isocyanurate [839-90-7] (THEIC) (48—52). Substitution of propylene oxide yields the hydroxypropyl analogue (48,49). At elevated temperatures (- 200° C). CA and alkylene oxides react in inert solvent to give A/-hydroxyalkyloxazohdones in approximately 70% yield (53). Alternatively, THEIC can be prepared by reaction of CA and 2-chloroethanol in aqueous caustic (52). THEIC can react further via its hydroxyl fiinctionahty to form esters, ethers, urethanes, phosphites, etc (54). Reaction of CA with epichlorohydrin in alkaline dioxane solution gives... [Pg.419]

About 60% of the ethylene oxide produced is converted to ethylene glycol by reaction of ethylene oxide ia the presence of excess water and an acidic catalyst at 50—70°C. This is followed by hydrolysis at relatively high temperatures (140—230°C) and 2—4 MPa (20—40 bar) (see Glycols, ethylene glycol). When the water concentration is lowered, poly(ethylene glycol) is obtained. [Pg.433]

Isomerization of ethylene oxide to acetaldehyde occurs at elevated temperatures ia the presence of catalysts such as activated alumina, phosphoric acid, and metallic phosphates (75). Iron oxides also catalyze this reaction. Acetaldehyde may be found as a trace impurity ia ethylene oxide. [Pg.454]

Polymerization of ethylene oxide can occur duriag storage, especially at elevated temperatures. Contamination with water, alkahes, acids, amines, metal oxides, or Lewis acids (such as ferric chloride and aluminum chloride) can lead to mnaway polymerization reactions with a potential for failure of the storage vessel. Therefore, prolonged storage at high temperatures or contact with these chemicals must be avoided (9). [Pg.463]

In the i-l. three-necked flask A (Fig. 2) is placed 550 cc. (4.25 moles) of 46 per cent hydrobromic acid (sp. g. 1.46) (Note i). Ethylene oxide (Note 2) is led into the acid solution as indicated in the diagram. The tank is arranged on a balance so that the amount of ethylene oxide which is used can be weighed. B is a U-tube containing water to indicate the rate of flow of the gas. Z) is a glass coil surrounded by ice and salt which cools the gas nearly to the liquefaction temperature. C is another U-tube containing water which shows whether or not the gas is being completely ab.sorbed. [Pg.12]

The flask A is surrounded by an ice-salt bath and the stirrer is started. When the temperature of the acid has dropped to 10°, 132 g. (3 moles) of ethylene oxide is added over a period of about two and one-half hours (Note 3). The stirring is continued for one hour (Note 4) after all of the ethylene oxide has been added and the temperature is maintained below 10° during the reaction. [Pg.12]

Laminating resins have been offered by Akzo (Diacryl 101), Dow (Derakane Vinyl Esters) and Showa (Spilac). Typical of these is Diacryl 101, which is manufactured by esterification of the addition product of ethylene oxide to bis-phenol A with methacrylic acid. They exhibit lower curing shrinkage than the polyester laminating resins during cure. The structure of Diacryl 101 is... [Pg.419]

Variations and Improvements on Alkylations of Chiral OxazoUnes Metalated chiral oxazolines can be trapped with a variety of different electrophiles including alkyl halides, aldehydes,and epoxides to afford useful products. For example, treatment of oxazoline 20 with -BuLi followed by addition of ethylene oxide and chlorotrimethylsilane yields silyl ether 21. A second metalation/alkylation followed by acidic hydrolysis provides chiral lactone 22 in 54% yield and 86% ee. A similar... [Pg.240]

A stream of ethylene oxide is passed through a solution of 107 g of 2-(p-chlorophenoxy)-2-methylpropionic acid and 2 g of zinc chloride in 200 ml of toluene, previously heated to between 55°C and 60°C, until 24 g of the gas have been dissolved. The reaction is allowed to continue for five hours, with gentle stirring. After this time has elapsed, the solution is cooled and washed successively with water, dilute ammonia and water until its pH becomes neutral. It is dried over anhydrous sodium sulfate, the solvent Is separated off under vacuum, and the resulting liquid is the monoglycol ester of 2-(p-chlorophenoxv)-2-methylpropionlc acid. [Pg.608]

The following procedure is given in U.S. Patent 3,458,528 78 grams (0.675 mol) of 5-nitroimidazole is dissolved in 1,500 ml of acetic acid upon the addition of 72 ml (0.57 mol) of boron trifluoride etherate. 175 ml (3.5 mols) of ethylene oxide in 175 ml of hexane, in a dropping funnel topped with a cold finger, is added slowly over 1 hour to the above solution maintained at 32° to 35°C with a water cooling bath. The mixture is concentrated under high vacuum to 100 to 150 ml volume. The residue is diluted with 500 ml of water, neutralized to pH 7 with aqueous sodium hydroxide, and extracted with 1.5 liters of ethyl acetate. The extract is dried and evaporated to yield 1-(2 -hydroxyethyl)-5-nitroimidazole. [Pg.1084]


See other pages where Acid of ethylene oxide is mentioned: [Pg.689]    [Pg.689]    [Pg.253]    [Pg.681]    [Pg.361]    [Pg.182]    [Pg.294]    [Pg.83]    [Pg.233]    [Pg.244]    [Pg.245]    [Pg.245]    [Pg.249]    [Pg.453]    [Pg.10]    [Pg.681]    [Pg.333]   
See also in sourсe #XX -- [ Pg.59 , Pg.63 ]




SEARCH



Acidity of ethylene

Ethylene acidity

Ethylene acids

Oxidation of ethylene

© 2024 chempedia.info