Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric acid hydroxide

Nitrates are prepared by the action of nitric acid on a metal or its oxide, hydroxide or carbonate. All nitrates are soluble in water. On heating, the nitrates of the alkali metals yield only oxygen and the nitrite ... [Pg.242]

Amino-4 -methylthiazole slowly decomposes on storage to a red viscous mass. It can be stored as the nitrate, which is readily deposited as pink crystals when dilute nitric acid is added to a cold ethanolic solution of the thiazole. The nitrate can be recrystallised from ethanol, although a faint pink colour persists. Alternatively, water can be added dropwise to a boiling suspension of the nitrate in acetone until the solution is just clear charcoal is now added and the solution, when boiled for a short time, filtered and cooled, deposits the colourless crystalline nitrate, m.p. 192-194° (immersed at 185°). The thiazole can be regenerated by decomposing the nitrate with aqueous sodium hydroxide, and extracting the free base with ether as before. [Pg.306]

Since the silver salts of the carboxylic acids are usually soluble in dilute nitric acid, they must be prepared by treating an aqueous solution of a neutral salt of the acid (and not the free acid itself) with silver nitrate solution. It is not practicable to attempt to neutralise the acid with sodium or potassium hydroxide solution, because the least excess of alkali would subsequently cause the white silver salt to be contaminated with brown silver oxide. The general method used therefore to obtain a neutral solution j to dissolve the acid in a small excess of ammonia solution, and then to boil the solution until all free... [Pg.445]

Alternatively, to prevent undue hydrolysis, make the solution just alkaline to phcnolphthalein with sodium hydroxide, then just acid with dilute nitric acid, and finally, add a slight excess of ammonia. [Pg.446]

It is preferable to use Tollen s ammoniacal silver nitrate reagent, which is prepared as follows Dissolve 3 g. of silver nitrate in 30 ml. of water (solution A) and 3 g. of sodium hydroxide in 30 ml. of water (solution B). When the reagent is requir, mix equal volumes (say, 1 ml.) of solutions A and JB in a clean test-tube, and add dilute ammonia solution drop by drop until the silver oxide is just dissolved. Great care must be taken in the preparation and use of this reagent, which must not be heated. Only a small volume should be prepared just before use, any residue washed down the sink with a large quantity of water, and the test-tubes rinsed with dilute nitric acid. [Pg.330]

Dissolve 10 g. of lactose (1) in 100 ml. of nitric acid, sp. gr. 115, in an evaporating dish and evaporate in a fume cupboard until the volume has been reduced to about 20 ml. The mixture becomes thick and pasty owing to the separation of mucic acid. When cold, dilute with 30 ml. of water, filter at the pump and set the filtrate A) aside. Wash the crude acid with cold water. Purify the mucic acid by dissolving it in the minimum volume of dilute sodium hydroxide solution and reprecipitating with dilute hydrochloric acid do not allow the temperature to rise above 25°. Dry the purified acid (about 5 g.) and determine the m.p. Mucic acid melts with decomposition at 212-213°. [Pg.453]

C. Palladium on carbon catalyst (5 per cent. Pd). Suspend 41-5 g. of nitric acid - washed activated carbon in 600 ml. of water in a 2-litre beaker and heat to 80°. Add a solution of 4 1 g. of anhydrous palladium chloride (1) in 10 ml. of concentrated hydrochloric acid and 25 ml. of water (prepared as in A), followed by 4 ml. of 37 per cent, formaldehyde solution. Stir the suspension mechanically, render it alkaUne to litmus with 30 per cent, sodium hydroxide solution and continue the stirring for a further 5 minutes. Filter off the catalyst on a Buchner funnel, wash it ten times with 125 ml. portions of water, and dry and store as in B. The yield is 46 g. [Pg.950]

Nitromethane Acids, alkylmetal halides, hydroxides, hydrocarbons, organic amines, formaldehyde, nitric acid, perchlorates... [Pg.1210]

Acid—Base Chemistry. Acetic acid dissociates in water, pK = 4.76 at 25°C. It is a mild acid which can be used for analysis of bases too weak to detect in water (26). It readily neutralizes the ordinary hydroxides of the alkaU metals and the alkaline earths to form the corresponding acetates. When the cmde material pyroligneous acid is neutralized with limestone or magnesia the commercial acetate of lime or acetate of magnesia is obtained (7). Acetic acid accepts protons only from the strongest acids such as nitric acid and sulfuric acid. Other acids exhibit very powerful, superacid properties in acetic acid solutions and are thus useful catalysts for esterifications of olefins and alcohols (27). Nitrations conducted in acetic acid solvent are effected because of the formation of the nitronium ion, NO Hexamethylenetetramine [100-97-0] may be nitrated in acetic acid solvent to yield the explosive cycl o trim ethyl en etrin itram in e [121 -82-4] also known as cyclonit or RDX. [Pg.66]

In 1973 the Semiconductor Equipment and Materials Institute (SEMI) held its first standards meeting. SEMI standards are voluntary consensus specifications developed by the producers, users, and general interest groups in the semiconductor (qv) industry. Examples of electronic chemicals are glacial acetic acid [64-19-7] acetone [67-64-17, ammonium fluoride [12125-01 -8] and ammonium hydroxide [1336-21 -6] (see Ammonium compounds), dichloromethane [75-09-2] (see Cm.OROCARBONSANDcm.OROHYDROCARBONs), hydrofluoric acid [7664-39-3] (see Eluorine compounds, inorganic), 30% hydrogen peroxide (qv) [7722-84-1] methanol (qv) [67-56-1] nitric acid (qv) [7697-37-2] 2-propanoI [67-63-0] (see Propyl alcohols), sulfuric acid [7664-93-9] tetrachloroethane [127-18-4] toluene (qv) [108-88-3] and xylenes (qv) (see also Electronic materials). [Pg.447]

Iodine dissolves without reaction in concentrated sulfuric acid and with concentrated nitric acid it reacts to form iodine pentoxide (47). Iodine reacts with alkah metal hydroxide solutions to form the corresponding hypoiodite and the rate of the reaction increases with the alkaU concentration and temperature. At 50°C, the reaction is almost instantaneous ... [Pg.361]

Mona.Zlte, The commercial digestion process for m on a site uses caustic soda. The phosphate content of the ore is recovered as marketable trisodium phosphate and the rare earths as RE hydroxide (10). The usual industrial practice is to attack finely ground m on a site using a 50% sodium hydroxide solution at 150°C or a 70% sodium hydroxide solution at 180°C. The resultant mixed rare-earth and thorium hydroxide cake is dissolved in hydrochloric or nitric acid, then processed to remove thorium and other nonrare-earth elements, and processed to recover the individual rare earths (see... [Pg.543]

Lead Fluoride. Lead difluoiide, Pbp2, is a white oithorhombic salt to about 220°C where it is transformed into the cubic form some physical properties ate given in Table 1. Lead fluoride is soluble in nitric acid and insoluble in acetone and ammonia. It is formed by the action of hydrofluoric acid on lead hydroxide or carbonate, or by the reaction between potassium fluoride and lead nitrate. [Pg.67]

Magnesium nitrate is prepared by dissolving magnesium oxide, hydroxide, or carbonate in nitric acid, followed by evaporation and crystallization at room temperature. Impurities such as calcium, iron, and aluminum are precipitated by pretreatment of the solution with slight excess of magnesium oxide, followed by filtration. Most magnesium nitrate is manufactured and used on site in other processes. [Pg.352]

Acidic Properties. As a typical acid, it reacts readily with alkaUes, basic oxides, and carbonates to form salts. The largest iadustrial appHcation of nitric acid is the reaction with ammonia to produce ammonium nitrate. However, because of its oxidising nature, nitric acid does not always behave as a typical acid. Bases having metallic radicals ia a reduced state (eg, ferrous and staimous hydroxide becoming ferric and stannic salts) are oxidized by nitric acid. Except for magnesium and manganese ia very dilute acid, nitric acid does not Hberate hydrogen upon reaction with metals. [Pg.39]

Aluminum nitrate nonahydrate is prepared by dissolving aluminum or aluminum hydroxide in dilute nitric acid, and crystaUi2ing the product from the resulting aqueous solution. It is made commercially from aluminous materials such as bauxite. Iron compounds may be extracted from the solution with naphthenic acids (21) before hydrate precipitation. In the laboratory it is prepared from aluminum sulfate and barium nitrate. [Pg.149]

Amino-2-hydroxybenZOiC acid. This derivative (18) more commonly known as 4-aminosa1icy1ic acid, forms white crystals from ethanol, melts with effervescence and darkens on exposure to light and air. A reddish-brown crystalline powder is obtained on recrystallization from ethanol —diethyl ether. The compound is soluble ia dilute solutioas of nitric acid and sodium hydroxide, ethanol, and acetone slightly soluble in water and diethyl ether and virtually insoluble in benzene, chloroform or carbon tetrachloride. It is unstable in aqueous solution and decarboxylates to form 3-amiaophenol. Because of the instabihty of the free acid, it is usually prepared as the hydrochloride salt, mp 224 °C (dec), dissociation constant p 3.25. [Pg.315]

Qualitative. The classic method for the quaUtative determination of silver ia solution is precipitation as silver chloride with dilute nitric acid and chloride ion. The silver chloride can be differentiated from lead or mercurous chlorides, which also may precipitate, by the fact that lead chloride is soluble ia hot water but not ia ammonium hydroxide, whereas mercurous chloride turns black ia ammonium hydroxide. Silver chloride dissolves ia ammonium hydroxide because of the formation of soluble silver—ammonia complexes. A number of selective spot tests (24) iaclude reactions with /)-dimethy1amino-henz1idenerhodanine, ceric ammonium nitrate, or bromopyrogaHol red [16574-43-9]. Silver is detected by x-ray fluorescence and arc-emission spectrometry. Two sensitive arc-emission lines for silver occur at 328.1 and 338.3 nm. [Pg.91]

Sodium nitrate can also be produced by neutralizing nitric acid with sodium hydroxide or sodium carbonate ... [Pg.195]

Industrial production of sodium nitrite is by absorption of nitrogen oxides (NO ) into aqueous sodium carbonate or sodium hydroxide. NO gases originate from catalytic air oxidation of anhydrous ammonia, a practice common to nitric acid plants ... [Pg.199]

There are a number of minerals in which thorium is found. Thus a number of basic process flow sheets exist for the recovery of thorium from ores (10). The extraction of mona ite from sands is accompHshed via the digestion of sand using hot base, which converts the oxide to the hydroxide form. The hydroxide is then dissolved in hydrochloric acid and the pH adjusted to between 5 and 6, affording the separation of thorium from the less acidic lanthanides. Thorium hydroxide is dissolved in nitric acid and extracted using methyl isobutyl ketone or tributyl phosphate in kerosene to yield Th(N02)4,... [Pg.35]

Most mineral acids react vigorously with thorium metal. Aqueous HCl attacks thorium metal, but dissolution is not complete. From 12 to 25% of the metal typically remains undissolved. A small amount of fluoride or fluorosiUcate is often used to assist in complete dissolution. Nitric acid passivates the surface of thorium metal, but small amounts of fluoride or fluorosiUcate assists in complete dissolution. Dilute HF, HNO, or H2SO4, or concentrated HCIO4 and H PO, slowly dissolve thorium metal, accompanied by constant hydrogen gas evolution. Thorium metal does not dissolve in alkaline hydroxide solutions. [Pg.37]

Oxo Ion Salts. Salts of 0x0 ions, eg, nitrate, sulfate, perchlorate, hydroxide, iodate, phosphate, and oxalate, are readily obtained from aqueous solution. Thorium nitrate is readily formed by dissolution of thorium hydroxide in nitric acid from which, depending on the pH of solution, crystalline Th(N02)4 5H20 [33088-17 ] or Th(N02)4 4H20 [33088-16-3] can be obtained (23). Thorium nitrate is very soluble in water and in a host of oxygen-containing organic solvents, including alcohols, ethers, esters, and ketones. Hydrated thorium sulfate, Th(S0 2 H20, where n = 9, 8, 6, or 4, is... [Pg.37]

The most important of these is the diboride, TiB2, which has a hexagonal stmeture and lattice parameters of a = 302.8 pm and c = 322.8 pm. Titanium diboride is a gray crystalline soUd. It is not attacked by cold concentrated hydrochloric or sulfuric acids, but dissolves slowly at boiling temperatures. It dissolves mote readily in nitric acid/hydrogen peroxide or nitric acid/sulfuric acid mixtures. It also decomposes upon fusion with alkaU hydroxides, carbonates, or bisulfates. [Pg.117]

BeryUium reacts readUy with sulfuric, hydrochloric, and hydrofluoric acids. DUute nitric acid attacks the metal slowly, whereas concentrated nitric acid has Httle effect. Hot concentrated alkaUes give hydrogen and the amphoteric beryUium hydroxide [13327-32-7] Be(OH)2. Unlike the aluminates, the beryUates are hydrolyzed at the boU. [Pg.66]

Beryllium Nitrate. BeryUium nitrate tetrahydrate [13516-48-0], Be(N02)2 4H2O, is prepared by crystallization from a solution of beryUium hydroxide or beryllium oxide carbonate in a slight excess of dilute nitric acid. After dissolution is complete, the solution is poured into plastic bags and cooled to room temperature. The crystallization is started by seeding. Crystallization from more concentrated acids yields crystals with less water of hydration. On heating above 100°C, beryllium nitrate decomposes with simultaneous loss of water and oxides of nitrogen. Decomposition is complete above 250°C. [Pg.76]


See other pages where Nitric acid hydroxide is mentioned: [Pg.160]    [Pg.275]    [Pg.484]    [Pg.199]    [Pg.290]    [Pg.588]    [Pg.741]    [Pg.950]    [Pg.102]    [Pg.404]    [Pg.10]    [Pg.277]    [Pg.70]    [Pg.107]    [Pg.25]    [Pg.27]    [Pg.38]    [Pg.47]    [Pg.64]    [Pg.202]    [Pg.203]    [Pg.95]    [Pg.149]    [Pg.280]    [Pg.334]   
See also in sourсe #XX -- [ Pg.294 , Pg.295 , Pg.296 ]

See also in sourсe #XX -- [ Pg.156 ]




SEARCH



© 2024 chempedia.info