Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric Acid Diluted

CfiHi 05 0 C6H4 CH20H. Colourless, bitter crystals, m.p. 20 PC soluble in water and alcohol, insoluble in chloroform. It occurs in the leaves, bark and twigs of species of willow and poplar. On oxidation with dilute nitric acid it is converted into helicin, the glucoside of salicylaldehyde, which has been made the starting point of further syntheses. Gives populin with benzoyl chloride. [Pg.350]

Again, nitric acid readily dissolves lead but is unable to oxidise lead beyond the oxidation state -P 2. The reduction products of the nitric acid vary with the concentration of acid used, and a number of nitrogen oxides are usually obtained. Warm dilute nitric acid gives mainly nitrogen oxide, NO. [Pg.170]

Lead(IV) oxide is also obtained when red lead , Pb304 (see below), is treated with dilute nitric acid ... [Pg.194]

Red lead is insoluble in water. Like lead(II) oxide it can readily be reduced to lead. The structure of the solid, as the systematic name suggests, consists of two interpenetrating oxide structures, in which each Pb atom is surrounded octahedrally by six oxygen atoms, and each Pb" by three (pyramidal) oxygen atoms, the oxygen atoms being shared between these two units of structure. With dilute nitric acid the lead(ll) part dissolves, and the lead(IV) part precipitates as lead(IV) oxide ... [Pg.195]

Arsenic dissolves in concentrated nitric acid forming arsenicfV) acid, H3ASO4, but in dilute nitric acid and concentrated sulphuric acid the main product is the arsenic(III) acid, HjAsOj. The more metallic element, antimony, dissolves to form the (III) oxide Sb O, with moderately concentrated nitric acid, but the (V) oxide Sb205 (structure unknown) with the more concentrated acid. Bismuth, however, forms the salt bismulh(lll) nitrate Bi(N03)3. 5H,0. [Pg.212]

With very dilute nitric acid and magnesium, some hydrogen is evolved. [Pg.241]

Addition of silver nitrate to a solution of a chloride in dilute nitric acid gives a white precipitate of silver chloride, AgCl, soluble in ammonia solution. This test may be used for gravimetric or volumetric estimation of chloride the silver chloride can be filtered off, dried and weighed, or the chloride titrated with standard silver nitrate using potassium chromate(VI) or fluorescein as indicator. [Pg.348]

Addition of silver nitrate to a solution of an iodide in dilute nitric acid, yields a yellow precipitate of silver iodide practically insoluble in ammonia. [Pg.349]

The impurities in ordinary iron assist dissolution in acid, and are responsible for the characteristic smell of the hydrogen from this source.) In dilute nitric acid, ammonium nitrate is formed ... [Pg.392]

It should be noted that aliphatic compounds (except the paraffins) are usually oxidised by concentrated nitric acid, whereas aromatic compounds (including the hydrocarbons) are usually nitrated by the concentrated acid (in the presence of sulphuric acid) and oxidised by the dilute acid. As an example of the latter, benzaldehyde, CjHsCHO, when treated with concentrated nitric acid gives ffi-nitrobenzaldehyde, N02CgH4CH0, but with dilute nitric acid gives benzoic acid, CgHgCOOH. [Pg.112]

Add a few drops of the distillate to an aqueous silver nitrate solution containing some dilute nitric acid and warm gently no silver chloride should be precipitated, indicating the complete absence of unchanged acetyl chloride. [Pg.116]

If phenol is treated even with dilute nitric acid at room temperature, nitration readily occurs with the simultaneous formation of the yellow o-nitro-phenol and the white /> nitrophenol. These compounds can be readily... [Pg.170]

This reaction consists of the condensation of two molecular equivalents of a 1,3 diketone (or a J3-keto-ester) with one equivalent of an aldehyde and one of ammonia. Thus the interaction of ethyl acetoacetate and acetaldehyde and ammonia affords the 1,4-dihy dro-pyridine derivative (1), which when boiled with dilute nitric acid readily undergoes dehydrogenation and aromatisation" to gb e the diethyl ester of collidine (or 2,4,6-trimethyl-pyridine-3,5 dicarboxylic acid (II)). For the initial condensation the solid aldehyde-ammonia can conveniently be used in place of the separate reagents. [Pg.295]

For dehydrogenation, add this ester to dilute nitric acid (20 ml. of the concentrated acid diluted with 40 ml. of water) and boil the mixture under reflux for about 5 minutes, during which the ester gently efferv esces and Anally gives a clear solution. Cool this solution in ice-w ater, make alkaline with aqueous sodium carbonate solution and extract tw ice with ether (50 ml. for each extraction). Dry the extract with sodium sulphate, filter, and then distil using a small distilling-flask... [Pg.296]

Amino-4 -methylthiazole slowly decomposes on storage to a red viscous mass. It can be stored as the nitrate, which is readily deposited as pink crystals when dilute nitric acid is added to a cold ethanolic solution of the thiazole. The nitrate can be recrystallised from ethanol, although a faint pink colour persists. Alternatively, water can be added dropwise to a boiling suspension of the nitrate in acetone until the solution is just clear charcoal is now added and the solution, when boiled for a short time, filtered and cooled, deposits the colourless crystalline nitrate, m.p. 192-194° (immersed at 185°). The thiazole can be regenerated by decomposing the nitrate with aqueous sodium hydroxide, and extracting the free base with ether as before. [Pg.306]

Since the silver salts of the carboxylic acids are usually soluble in dilute nitric acid, they must be prepared by treating an aqueous solution of a neutral salt of the acid (and not the free acid itself) with silver nitrate solution. It is not practicable to attempt to neutralise the acid with sodium or potassium hydroxide solution, because the least excess of alkali would subsequently cause the white silver salt to be contaminated with brown silver oxide. The general method used therefore to obtain a neutral solution j to dissolve the acid in a small excess of ammonia solution, and then to boil the solution until all free... [Pg.445]

Alternatively, to prevent undue hydrolysis, make the solution just alkaline to phcnolphthalein with sodium hydroxide, then just acid with dilute nitric acid, and finally, add a slight excess of ammonia. [Pg.446]

It is preferable to use Tollen s ammoniacal silver nitrate reagent, which is prepared as follows Dissolve 3 g. of silver nitrate in 30 ml. of water (solution A) and 3 g. of sodium hydroxide in 30 ml. of water (solution B). When the reagent is requir, mix equal volumes (say, 1 ml.) of solutions A and JB in a clean test-tube, and add dilute ammonia solution drop by drop until the silver oxide is just dissolved. Great care must be taken in the preparation and use of this reagent, which must not be heated. Only a small volume should be prepared just before use, any residue washed down the sink with a large quantity of water, and the test-tubes rinsed with dilute nitric acid. [Pg.330]

Add 1 drop (0 05 ml.) of concentrated nitric acid to 2 0 ml. of a 0 5 per cent, aqueous solution of paraperiodic acid (HjIO,) contained in a small test-tube and shake well. Then introduce 1 op or a small crystal of the compound. Shake the mixture for 15 seconds and add 1-2 drops of 5 per cent, aqueous silver nitrate. The immediate production of a white precipitate (silver iodate) constitutes a positive test and indicates that the organic compound has been oxidised by the periodic acid. The test is based upon the fact that silver iodate is sparingly soluble in dilute nitric acid whereas silver periodate is very soluble if too much nitric acid is present, the silver iodate will not precipitate. [Pg.447]

The oxidation of cyctopentanone (Section 111,73) with dilute nitric acid gives glutaric acid accompanied by some succinic acid the latter is removed as the sparingly-soluble barium salt ... [Pg.489]

A brief account of aromatic substitution may be usefully given here as it will assist the student in predicting the orientation of disubstituted benzene derivatives produced in the different substitution reactions. For the nitration of nitrobenzene the substance must be heated with a mixture of fuming nitric acid and concentrated sulphuric acid the product is largely ni-dinitrobenzene (about 90 per cent.), accompanied by a little o-dinitrobenzene (about 5 per cent.) which is eliminated in the recrystallisation process. On the other hand phenol can be easily nitrated with dilute nitric acid to yield a mixture of ortho and para nitrophenols. It may be said, therefore, that orientation is meta with the... [Pg.524]

Phenol may be nitrated with dilute nitric acid to 3deld a mixture of o- and nitrophenols the 3deld of p-nitrophenol is increased if a mixture of sodium nitiute and dilute sulphuric acid is employed. Upon steam distilling the mixture, the ortho isomer passes over in a substantially pure form the para isomer remains in the distillation flask, and can be readily isolated by extraction with hot 2 per cent, hydrochloric acid. The preparation of m-nitrophenol from wt-nitroaniline by means of the diazo reaction is described in Section IV,70. [Pg.665]

Aromatic alcohols are insoluble in water and usually burn with a smoky flame. Their boiling points are comparatively high some are solids at the ordinary temperature. Many may be oxidised by cautious addi-tion of dilute nitric acid to the corresponding aldehyde upon neutralis-tion of the excess of acid, the aldehyde may be isolated by ether extraction or steam distillation, and then identified as detailed under Aromatic Aldehydes, Section IV,135. [Pg.817]

Introduce a solution of 15 g. of the diazo ketone in 100 ml. of dioxan dropwise and with stirring into a mixture of 2 g. of silver oxide (1), 3 g. of sodium thiosulphate and 5 g. of anhydrous sodium carbonate in 200 ml. of water at 50-60°. When the addition is complete, continue the stirring for 1 hour and raise the temperature of the mixture gradually to 90-100°. Cool the reaction mixture, dilute with water and acidify with dilute nitric acid. Filter off the a-naphthylacetic acid which separates and recrys-talhse it from water. The yield is 12 g., m.p. 130°. [Pg.904]

Sulphur, as sulphide ion, is detected by precipitation as black lead sulphide with lead acetate solution and acetic acid or with sodium plumbite solution (an alkaLine solution of lead acetate). Halogens are detected as the characteristic silver halides by the addition of silver nitrate solution and dilute nitric acid the interfering influence of sulphide and cyanide ions in the latter tests are discussed under the individual elements. [Pg.1039]

Nitrogen and sulphur absent, (i) If only one halogen is present, acidify with dilute nitric acid and add excess of silver nitrate solution. A precipitate indicates the presence of a halogen. Decant the mother liquor and treat the precipitate with dilute aqueous ammonia solution If the precipitate is white and readily soluble in the ammonia solution, chlorine is present if it is pale yellow and difficultly soluble, bromine is present if it is yellow and insoluble, then iodine is indicated. Iodine and bromine should be confirmed by the tests given below. [Pg.1041]

Nitrogen and sulphur present. Just acidify 2-3 ml. of the fusion solution with dilute nitric acid, and evaporate to half the original volume in order to expel hydrogen cyanide and/or hydrogen sulphide which may be present. Dilute with an equal volume of water. If only one halogen is present, proceed as in tests (i) or (iii). If one or more halogens may be present, use tests (ii), (iii) or (iv). [Pg.1042]

In qualitative organic analysis, use is made of the fact that silver iodate is sparingly soluble in dilute nitric acid whereas silver periodate is very soluble. For water-insoluble compounds solutions in ethanol or in pure dioxan may be employed. [Pg.1070]

Oxidation of 2-hydrazinothiazoles with FeCls gives 2-azothiazoles in good yields (515, 521, 538-540). This oxidation may also be performed with dilute nitric acid (523, 541). However, the reaction of concentrated... [Pg.102]

Another possible route to 2-unsubstituted thiazoles is replacement of a mercapto group by a hydrogen. Various methods have been used hydrogen peroxide in acid medium (17-19) dilute nitric acid (17), and metallic catalysts (20-22). [Pg.340]

The practical problems He ia the separatioa of the chlorine from the hydrogea chloride and nitrous gases. The dilute nitric acid must be reconcentrated and corrosion problems are severe. Suggested improvements iaclude oxidation of concentrated solutions of chlorides, eg, LiCl, by nitrates, followed by separation of chlorine from nitrosyl chloride by distillation at 135°C, or oxidation by a mixture of nitric and sulfuric acids, separating the... [Pg.504]

Lead styphnate monohydrate is precipitated as the basic salt from a mixture of solutions of magnesium styphnate and lead acetate followed by conversion to the normal form by acidification using dilute nitric acid (97—99). [Pg.11]


See other pages where Nitric Acid Diluted is mentioned: [Pg.221]    [Pg.360]    [Pg.171]    [Pg.186]    [Pg.239]    [Pg.324]    [Pg.324]    [Pg.324]    [Pg.422]    [Pg.112]    [Pg.245]    [Pg.245]    [Pg.290]    [Pg.1041]    [Pg.1042]    [Pg.1061]    [Pg.102]    [Pg.1]   
See also in sourсe #XX -- [ Pg.968 ]




SEARCH



Acids diluting

Acids dilution

Dilute acid

Diluted acids

Nitration with dilute nitric acid

Nitric acid, dilute

© 2024 chempedia.info