Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Naphtha, 102 Table

Hoechst WHP Process. The Hoechst WLP process uses an electric arc-heated hydrogen plasma at 3500—4000 K it was developed to industrial scale by Farbwerke Hoechst AG (8). Naphtha, or other Hquid hydrocarbon, is injected axially into the hot plasma and 60% of the feedstock is converted to acetylene, ethylene, hydrogen, soot, and other by-products in a residence time of 2—3 milliseconds Additional ethylene may be produced by a secondary injection of naphtha (Table 7, Case A), or by means of radial injection of the naphtha feed (Case B). The oil quenching also removes soot. [Pg.386]

Naphtha - Table IV shows properties of the naphtha product at the high and intermediate severities. The naphtha produced at the highest severity is essentially free of nitrogen, sulfur, and oxygen and can be fed directly to a catalytic reformer. The naphtha produced at the lower severities is... [Pg.84]

Table 7.9 Specifications and test methods for naphthas. These products are industrial intermediates and are not subject to ... Table 7.9 Specifications and test methods for naphthas. These products are industrial intermediates and are not subject to ...
Table 3. Yields at High and Low Severity For Full-Range Naphtha Feedstock ... Table 3. Yields at High and Low Severity For Full-Range Naphtha Feedstock ...
Properties. Shell s two-step SMDS technology allows for process dexibiUty and varied product slates. The Hquid product obtained consists of naphtha, kerosene, and gas oil in ratios from 15 25 60 to 25 50 25, depending on process conditions. Of particular note are the high quaHty gas oil and kerosene. Table 2 gives SMDS product quaHties for these fractions. [Pg.82]

Properties. The properties of naphtha, gas od, and H-od products from an H-coal operation are given in Table 7. These analyses are for Hquids produced from the syncmde operating mode. Whereas these Hquids are very low in sulfur compared with typical petroleum fractions, they are high in oxygen and nitrogen levels. No residual od products (bp > 540° C) are formed. [Pg.89]

Table 8 shows that the naphthas produced by the EDS process have higher concentrations of cycloparaffins and phenols than do petroleum-derived naphthas, whereas the normal paraffins are present in much lower concentrations. The sulfur and nitrogen concentrations in coal naphthas are high compared to those in petroleum naphthas. [Pg.91]

Table 8. Composition of Naphthas from Various Sources... Table 8. Composition of Naphthas from Various Sources...
The principal class of reactions in the FCC process converts high boiling, low octane normal paraffins to lower boiling, higher octane olefins, naphthenes (cycloparaffins), and aromatics. FCC naphtha is almost always fractionated into two or three streams. Typical properties are shown in Table 5. Properties of specific streams depend on the catalyst, design and operating conditions of the unit, and the cmde properties. [Pg.184]

The feedstocks used ia the production of petroleum resias are obtaiaed mainly from the low pressure vapor-phase cracking (steam cracking) and subsequent fractionation of petroleum distillates ranging from light naphthas to gas oil fractions, which typically boil ia the 20—450°C range (16). Obtaiaed from this process are feedstreams composed of atiphatic, aromatic, and cycloatiphatic olefins and diolefins, which are subsequently polymerized to yield resias of various compositioas and physical properties. Typically, feedstocks are divided iato atiphatic, cycloatiphatic, and aromatic streams. Table 2 illustrates the predominant olefinic hydrocarbons obtained from steam cracking processes for petroleum resia synthesis (18). [Pg.352]

The composition of the cracked gas with methane and naphtha and the plant feed and energy requirements are given in Table 9. The overall yield of acetylene based on methane is about 24% (14). A single burner with methane produces 25 t/d and with naphtha or LPG produces 30 t/d. The acetylene is purified by means of /V-methy1pyrro1idinone. [Pg.387]

The cracked gas composition is shown ia Table 10 for the water queach operatioa (16). Oae thousand cubic meters of methane and 600 m of oxygen produce 1800 m of cracked gas. If a naphtha quench is used, additional yields are produced, consuming 130 kg of naphtha/1000 of methane... [Pg.388]

Table 14 Hsts the acetylene-producing plants in Western Europe as of 1991. Of the 782,000 t of aimual capacity, 48% is produced from natural gas, 46% from calcium carbide, 4% from naphtha, and 2% as ethylene coproduct. Table 14 Hsts the acetylene-producing plants in Western Europe as of 1991. Of the 782,000 t of aimual capacity, 48% is produced from natural gas, 46% from calcium carbide, 4% from naphtha, and 2% as ethylene coproduct.
Naphthalene is very slightly soluble in water but is appreciably soluble in many organic solvents, eg, 1,2,3,4-tetrahydronaphthalene, phenols, ethers, carbon disulfide, chloroform, ben2ene, coal-tar naphtha, carbon tetrachloride, acetone, and decahydronaphthalene. Selected solubiUty data are presented in Table 4. [Pg.482]

The naphtha fraction is dorninated by saturates having lesser amounts of mono- and diaromatics (Table 2, Eig. 4). Whereas naphtha (ibp to 210°C) covers the boiling range of gasoline, most raw petroleum naphtha molecules have a low octane number and most raw naphtha is processed further, to be combined with other process naphthas and additives to formulate commercial gasoline. [Pg.167]

The predominant feeds for reforming are straight-mn naphthas from cmde stills. Naphthas from catalyst crackers and naphthas from code stills are also used. Typical compositions are summarized in Table 5. Typical operating conditions for catalytic reforming are 1.135—3.548 MPa (150—500 psi),... [Pg.179]

Liquid fuels for ground-based gas turbines are best defined today by ASTM Specification D2880. Table 4 Hsts the detailed requirements for five grades which cover the volatility range from naphtha to residual fuel. The grades differ primarily in basic properties related to volatility eg, distillation, flash point, and density of No. 1 GT and No. 2 GT fuels correspond to similar properties of kerosene and diesel fuel respectively. These properties are not limited for No. 0 GT fuel, which allows naphthas and wide-cut distillates. For heavier fuels. No. 3 GT and No. 4 GT, the properties that must be limited are viscosity and trace metals. [Pg.409]

Table 2. Properties of Straight Run Naphthas from Various Crude Oils... Table 2. Properties of Straight Run Naphthas from Various Crude Oils...
The combination of low residence time and low partial pressure produces high selectivity to olefins at a constant feed conversion. In the 1960s, the residence time was 0.5 to 0.8 seconds, whereas in the late 1980s, residence time was typically 0.1 to 0.15 seconds. Typical pyrolysis heater characteristics are given in Table 4. Temperature, pressure, conversion, and residence time profiles across the reactor for naphtha cracking are illustrated in Figure 2. [Pg.435]

Table 6 shows the effect of varying coil oudet pressure and steam-to-oil ratio for a typical naphtha feed on the product distribution. Although in these tables, the severity is defined as maximum, in a reaUstic sense they are not maximum. It is theoretically possible that one can further increase the severity and thus increase the ethylene yield. Based on experience, however, increasing the severity above these practical values produces significantly more fuel oil and methane with a severe reduction in propylene yield. The mn length of the heater is also significantly reduced. Therefore, this is an arbitrary maximum, and if economic conditions justify, one can operate the commercial coils above the so-called maximum severity. However, after a certain severity level, the ethylene yield drops further, and it is not advisable to operate near or beyond this point because of extremely severe coking. [Pg.437]

Table 6. Product Distribution, wt %, as a Function of Severity and Selectivity for a Naphtha Feed ... Table 6. Product Distribution, wt %, as a Function of Severity and Selectivity for a Naphtha Feed ...
The propylene fractionator operates at a pressure of 1.8 to 2.0 MPa with more than 160 trays required for a high purity propylene product. Often a two-tower design is employed when polymer grade (99.5%+) is required. A pasteurization section may also be used when high purity is required. The bottoms product contains mainly propane that can be recycled to the cracking heaters or used as fuel. Typical tower dimensions and internals for a 450,000 t/yr ethylene plant with naphtha feed are summarized in Table 7. [Pg.441]

Vaporized fuel oil gas behaves very elosely to natural gas beeause it provides high performanee with a minimum reduetion of eomponent life. About 40% of the turbine power installed operates on liquid fuels. Liquid fuels ean vary from light volatile naphtha through kerosene to the heavy viseous residuals. The elasses of liquid fuels and their requirements are shown in Table 12-1. [Pg.436]

Selecting the naphtha type can be an important processing procedure. For example, a paraffinic-base naphtha is a better feedstock for steam cracking units because paraffins are cracked at relatively lower temperatures than cycloparaffins. Alternately, a naphtha rich in cycloparaffins would be a better feedstock to catalytic reforming units because cyclo-paraffins are easily dehydrogenated to aromatic compounds. Table 2-5 is a typical analysis of naphtha from two crude oil types. [Pg.43]

Vapors from the top of the drum are directed to the fractionator where they are separated into gases, naphtha, kerosine, and gas oil. Table 3-3 shows products from a delayed coker using different feeds. ... [Pg.57]

Feeds to hydrotreatment units vary widely they could he any petroleum fraction, from naphtha to crude residues. The process is relatively simple choosing the desulfurization process depends largely on the feed type, the level of impurities present, and the extent of treatment needed to suit the market requirement. Table 3-12 shows the feed and product properties from a hydro treatment unit. ... [Pg.83]


See other pages where Naphtha, 102 Table is mentioned: [Pg.254]    [Pg.291]    [Pg.169]    [Pg.173]    [Pg.174]    [Pg.184]    [Pg.184]    [Pg.386]    [Pg.389]    [Pg.357]    [Pg.158]    [Pg.168]    [Pg.168]    [Pg.206]    [Pg.19]    [Pg.343]    [Pg.361]    [Pg.307]    [Pg.347]    [Pg.370]    [Pg.446]    [Pg.2079]    [Pg.92]    [Pg.50]    [Pg.99]   
See also in sourсe #XX -- [ Pg.3 , Pg.3 ]




SEARCH



Naphtha

© 2024 chempedia.info