Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shape-selective adsorption

When developing a liquid phase adsorptive separation process, a laboratory pulse test is typically used as a tool to search for a suitable adsorbent and desorbent combination for a particular separation. The properties of the suitable adsorbent, such as type of zeolite, exchange cation and adsorbent water content, are a critical part of the study. The desorbent, temperature and liquid flow circulation are also critical parameters that can be obtained from the pulse test. The pulse test is not only a critical tool for developing the equilibrium-selective adsorption process it is also an essential tool for other separation process developments such as rate-selective adsorption, shape-selective adsorption, ion exchange and reactive adsorption. [Pg.209]

A (Figure 4.9). The diameter of such a neck, 2.3 A, is sufficiently large for a linear C-C chain to pass, but too small to also be an equilibrium adsorption position. The largest compound allowed inside the pores is a linear molecule limited in length to four carbon atoms due to the distance between two subsequent necks [103]. Another example of shape-selective behavior is found in a Zn-based MOF able to encapsulate linear hexane while branched hexanes are blocked [104]. [Pg.88]

Shape selective catalysis as typically demonstrated by zeolites is of great interest from scientific as well as industrial viewpoint [17], However, the application of zeolites to organic reactions in a liquid-solid system is very limited, because of insufficient acid strength and slow diffusion of reactant molecules in small pores. We reported preliminarily that the microporous Cs salts of H3PW12O40 exhibit shape selectivity in a liquid-solid system [18]. Here we studied in more detail the acidity, micropore structure and catal3rtic activity of the Cs salts and wish to report that the acidic Cs salts exhibit efficient shape selective catalysis toward decomposition of esters, dehydration of alcohol, and alkylation of aromatic compound in liquid-solid system. The results were discussed in relation to the shape selective adsorption and the acidic properties. [Pg.582]

In view of catalytic potential applications, there is a need for a convenient means of characterization of the porosity of new catalyst materials in order to quickly target the potential industrial catalytic applications of the studied catalysts. The use of model test reactions is a characterization tool of first choice, since this method has been very successful with zeolites where it precisely reflects shape-selectivity effects imposed by the porous structure of tested materials. Adsorption of probe molecules is another attractive approach. Both types of approaches will be presented in this work. The methodology developed in this work on zeolites Beta, USY and silica-alumina may be appropriate for determination of accessible mesoporosity in other types of dealuminated zeolites as well as in hierarchical materials presenting combinations of various types of pores. [Pg.217]

Laird DA, Barriuso E, Dowdy RH, Koskinen WC (1992) Adsorption of atrazine on smectites. Soil Sci Soc Am J 56 62-67 LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites an overview. Appl Clay Sci 15 11-29 Lee J-F, Crum JR, Boyd SA (1989) Enhanced retention of organic contaminants by soil exchanged with organic cations. Environ Sci Technol 23 1365-1372 Lee J-F, Mortland MM, Boyd SA, Chiou CT (1989a) Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite. J Chem Soc Faraday Trans I 8 2953-2962... [Pg.171]

It has also been shown that the selectivity features of para-selective catalysts can be readily understood from an interplay of catalytic reaction with mass transfer. This interaction is described by classical diffusion-reaction equations. Two catalyst properties, diffusion time and intrinsic activity, are sufficient to characterize the shape selectivity of a catalyst, both its primary product distribution and products at higher degrees of conversion. In the correlative model, the diffusion time used is that for o-xylene adsorption at... [Pg.299]

The exact mechanism controlling shape-selective retentive processes is not fully understood, although it is clear that the pure partitioning and adsorption models cannot account for differences in retention for isomer separations or the range of selectivityobserved for columns of various surface coverages and alkyl chain lengths. [Pg.284]

Shape-selective adsorption, also known as molecular sieving, is a process that separates molecules based on inclusion or exclusion from specific zeolite pores. In contrast, the equilibrium- and rate-selective mechanisms are based on adsorb-... [Pg.222]

Figure 6.2 illustrates the separation of n-Csis and non-n-Cs/is in CaA molecular sieves or 5A. The separation mechanism is obvious when the kinetic diameter of the molecules and molecular sieve pore size opening are compared. n-Csjc have kinetic diameters of less than 4.4 A which can diffuse freely into the 4.7 A pores of the CaA molecular sieve, while non-n-Cs/ have kinetic diameters of 6.2A. A commercial example of shape-selective adsorption is the UOP Molex process, which uses CaA molecular sieves to separate Cio-C n-paraffins from non- -parafHns (aromatics, branched, naphthenes). [Pg.223]

Namba, S., Kanai, Y., Shoji, H., and Yashima, T. (1984) Separation of p-isomers from disubstituted benzenes by means of shape-selective adsorption on mordenite and ZSM-5 zeolites. [Pg.226]

Adsorption of various molecules that are similar in size to micropores have been used to characterize pore size and shape in zeolites, as summarized in Section 13.2.3.1, with the ultimate objective of understanding shape selectivity effects. Also... [Pg.430]

Owing to the possibility of tuning (1) their acidic and basic properties, (2) their surface hydrophilicity, and (3) their adsorption and shape-selectivity properties, catalytic activity of zeolites was investigated in the production of HMF from carbohydrates. Whatever the hexose used as starting material, acidic pillared montmorillonites and faujasite were poorly selective towards HMF, yielding levu-linic and formic acids as the main products [81-83]. [Pg.78]

Of course, certain features of overall kinetics are inaccessible via a cluster model method, such as the influence of pore structure on reactivity. The cluster model method cannot integrate reaction rates with concepts such as shape selectivity, and an alternative method of probing overall kinetics is needed. This has recently been illustrated by a study of the kinetics of the hydroisomerization of hexane catalyzed by Pt-loaded acidic mordenite and ZSM-5 (211). The intrinsic acidities of the two catalysts were the same, and differences in catalyst performance were shown to be completely understood on the basis of differences in the heat of adsorption of hexene, an intermediate in the isomerization reaction. Heats of adsorption are strongly dependent on the zeolite pore diameter, as shown earlier in this review (Fig. 11). [Pg.87]

The MFI class of channel zeolites, of which ZSM-5 is a member, are of enormous importance in the petrochemicals industry because of their shape-selective adsorption and transformation properties. The most well-known example is the selective synthesis and diffusion of p-xylene through ZSM-5, in preference to the o- and m-isomers. Calcined zeolites such as ZSM-5 are able to carry out remarkable transformations upon normally unreactive organic molecules because of super-acid sites that exist... [Pg.582]

Since the last review by Venuto in 1968,[1] there has been a continuous interest in the application of microporous and mesoporous materials as catalysts in the synthesis of bulk and fine chemicals.[211 Indeed, their acidic and basic properties can be combined with their structural properties in order to take advantage of their adsorption and shape selectivity properties, the latter being an advantageous feature of zeolites compared with other heterogeneous catalysts. Another important aspect... [Pg.141]

The transport and adsorption properties of hydrocarbons on microporous zeolites have been of practical interest due to the important properties of zeolites as shape-selective adsorbents and catalysts. The system of benzene adsorbed on synthetic faujasite-type zeolites has been thoroughly studied because benzene is an ideal probe molecule and the related role of aromatics in zeolitic catalysts for alkylation and cracking reactions. For instance, its mobility and thermodynamic properties have been studied by conventional diffusion 1-6) and adsorption 7-9) techniques. Moreover, the adsorbate-zeolite interactions and related motion and location of the adsorbate molecules within the zeolite cavities have been investigated by theoretical calculations 10-15) and by various spectroscopic methods such as UV (16, 17), IR 17-23), neutron 24-27), Raman 28), and NMR 29-39). [Pg.273]


See other pages where Shape-selective adsorption is mentioned: [Pg.89]    [Pg.589]    [Pg.609]    [Pg.32]    [Pg.35]    [Pg.157]    [Pg.243]    [Pg.286]    [Pg.287]    [Pg.211]    [Pg.222]    [Pg.223]    [Pg.238]    [Pg.322]    [Pg.403]    [Pg.424]    [Pg.424]    [Pg.438]    [Pg.439]    [Pg.440]    [Pg.444]    [Pg.471]    [Pg.515]    [Pg.41]    [Pg.81]    [Pg.525]    [Pg.219]    [Pg.413]    [Pg.352]    [Pg.145]    [Pg.117]    [Pg.118]    [Pg.217]   
See also in sourсe #XX -- [ Pg.222 ]




SEARCH



Adsorption selectivity

Adsorption, selective

Shape adsorption

Shape selection

Shape selectivity

© 2024 chempedia.info