Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Industrial adsorptive separation

Industrial adsorption separation processes for liquids are most successful when the species involved have very close boiling points, making distillation expensive or even impossible or are thermally sensitive at convenient distillation temperatures. [Pg.174]

The principal types of industrial adsorbent can be divided into amorphous and the crystalline types. The former includes activated carbon, silica gel, and activated alumina the latter includes zeolites and their aluminum phosphate, AIPO4 (or ALPO), analogs. Yang (2003) wrote that, since the invention of synthetic zeolites in 1959, adsorption has become a key separation tool in the chemical, petrochemical, and pharmaceutical industries. Adsorptive separation of different molecules can be achieved by three mechanisms equilibrium adsorption differences, diffusion kinetics differences. [Pg.321]

Petroleum fractions contain many different hydrocarbon molecules and ever more stringent environmental constraints now determine con iosition and purity requirements of the products. Furthermore, when upgrading different hydrocarbon streams the formation of side-products leads to even more complex mixtures. For example when producing linear olefinic hydrocarbons by paraffin dehydrogenation aromatic side-products are formed [28]. Often, alkane/alkene/aromatic hydrocarbon mixtures have to be separated. For the liquid phase separation of normal alkenes from n-alkene/n-alkane mixtures, the OLEX process was developed [2]. Also, the separation of alkane/alkene mixtures by adsorption via Ji-complexation has been extensively studied [29-31]. However, no industrial adsorptive separation processes are available for the separation of either alkanes or alkenes of different chain length. Rather, a downstream distillation section is used as to separate for exan5)le the linear aZp/jfl-olefins (C4-C10) produced by the AlphaSelect Process (IFP) [32]. [Pg.147]

Because p-xylene is the most valuable isomer for producing synthetic fibers, it is usually recovered from the xylene mixture. Fractional crystallization used to be the method for separating the isomers, but the yield was only 60%. Currently, industry uses continuous liquid-phase adsorption separation processes.The overall yield of p-xylene is increased... [Pg.39]

Johnson, J. A. and Kabza, R. G. I. Chem. E. Annual Research Meeting, Swansea (1990) Sorbex Industrial scale adsorptive separation. [Pg.1048]

Poro-xylene is an industrially important petrochemical. It is the precursor chemical for polyester and polyethylene terephthalate. It usually is found in mixtures containing all three isomers of xylene (ortho-, meta-, para-) as well as ethylbenzene. The isomers are very difficult to separate from each other by conventional distillation because the boiling points are very close. Certain zeoHtes or mol sieves can be used to preferentially adsorb one isomer from a mixture. Suitable desorbents exist which have boiling points much higher or lower than the xylene and displace the adsorbed species. The boihng point difference then allows easy recovery of the xylene isomer from the desorbent by distillation. Because of the basic electronic structure of the benzene ring, adsorptive separations can be used to separate the isomers of famihes of substituted aromatics as weU as substituted naphthalenes. [Pg.174]

Industrial examples of adsorbent separations shown above are examples of bulk separation into two products. The basic principles behind trace impurity removal or purification by liquid phase adsorption are similar to the principles of bulk liquid phase adsorption in that both systems involve the interaction between the adsorbate (removed species) and the adsorbent. However, the interaction for bulk liquid separation involves more physical adsorption, while the trace impurity removal often involves chemical adsorption. The formation and breakages of the bonds between the adsorbate and adsorbent in bulk liquid adsorption is weak and reversible. This is indicated by the heat of adsorption which is <2-3 times the latent heat of evaporahon. This allows desorption or recovery of the adsorbate from the adsorbent after the adsorption step. The adsorbent selectivity between the two adsorbates to be separated can be as low as 1.2 for bulk Uquid adsorptive separation. In contrast, with trace impurity removal, the formation and breakages of the bonds between the adsorbate and the adsorbent is strong and occasionally irreversible because the heat of adsorption is >2-3 times the latent heat of evaporation. The adsorbent selectivity between the impurities to be removed and the bulk components in the feed is usually several times higher than the adsorbent selectivity for bulk Uquid adsorptive separation. [Pg.175]

This chapter addresses the fundamentals of zeolite separation, starting with (i) impacts of adsorptive separation, a description of liquid phase adsorption, (ii) tools for adsorption development such as isotherms, pulse and breakthrough tests and (iii) requirements for appropriate zeolite characteristics in adsorption. Finally, speculative adsorption mechanisms are discussed. It is the author s intention that this chapter functions as a bridge to connect the readers to Chapters 7 and 8, Liquid Industrial Aromatics Adsorptive Separation and Liquid Industrial Non-Aromatics Adsorptive Separation, respectively. The industrial mode of operation, the UOP Sorbex technology, is described in Chapters 7 and 8. [Pg.203]

Adsorptive separation is a powerful technology in industrial separations. In many cases, adsorption is the only technology available to separate products from industrial process streams when other conventional separation tools fail, such as distillation, absorption, membrane, crystallization and extraction. Itis also demonstrated that zeolites are unique as an adsorbent in adsorptive separation processes. This is because zeolites are crystalline soUds that are composed of many framework structures. Zeolites also have uniform pore openings, ion exchange abiUty and a variety of chemical compositions and crystal particle sizes. With the features mentioned, the degree of zeoUte adsorption is almost infinite. It is also noted that because of the unique characteristics of zeoHtes, such as various pore openings, chemical compositions and structures, many adsorption mechanisms are in existence and are practiced commercially. [Pg.225]

Zeolites have been used in the industrial adsorptive purification of aromahc petrochemicals since the early 1970s. The application of zeolites to aromatic adsorptive purification and extraction is a particularly suitable fit because of three major factors. The first is the inherent difficulty involved in separating certain aromatic components by distillation. Petrochemical production requires individual components be obtained in very high purity, often in excess of 99.5%. While distillation is the most popular method of separation in the petrochemical industry, it is not well suited for the final step of producing high purity single component streams from close boiling multi-component aromatics-rich mixtures. [Pg.229]

Dehydration is by far the largest industrial separation of interest here. Removal of water was the first commercial application of molecular sieves. Dehydration and related fixed-bed adsorptive separations in the process industries account for more than half of the commercial molecular sieve business volume. [Pg.289]


See other pages where Industrial adsorptive separation is mentioned: [Pg.173]    [Pg.175]    [Pg.275]    [Pg.173]    [Pg.175]    [Pg.275]    [Pg.268]    [Pg.2063]    [Pg.299]    [Pg.73]    [Pg.427]    [Pg.173]    [Pg.174]    [Pg.204]    [Pg.231]    [Pg.249]    [Pg.250]    [Pg.252]    [Pg.254]    [Pg.256]    [Pg.258]    [Pg.260]    [Pg.262]    [Pg.264]    [Pg.266]    [Pg.268]    [Pg.270]    [Pg.272]    [Pg.273]    [Pg.274]    [Pg.276]    [Pg.278]    [Pg.280]    [Pg.282]    [Pg.284]    [Pg.286]    [Pg.288]    [Pg.290]    [Pg.292]    [Pg.294]    [Pg.296]    [Pg.298]   


SEARCH



Adsorptive industrial

Adsorptive separation

Industrial Gas Phase Adsorptive Separations

Industrial gases adsorption separation

Industrial separation

Liquid Industrial Non-Aromatics Adsorptive Separations

Liquid adsorptive separation, industrial

Separation adsorption

Separator industrial

© 2024 chempedia.info