Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption liquid-separation system

Highly pure / -hexane can be produced by adsorption on molecular sieves (qv) (see Adsorption, liquid separation) (43). The pores admit normal paraffins but exclude isoparaffins, cycloparaffins, and aromatics. The normal paraffins are recovered by changing the temperature and/or pressure of the system or by elution with a Hquid that can be easily separated from / -hexane by distillation. Other than ben2ene, commercial hexanes also may contain small concentrations of olefins (qv) and compounds of sulfur, oxygen, and chlorine. These compounds caimot be tolerated in some chemical and solvent appHcations. In such cases, the commercial hexanes must be purified by hydrogenation. [Pg.405]

Another approach is the simulated moving-bed system, which has large-volume appHcations in normal-paraffin separation andpara- s.yXen.e separation. Since its introduction in 1970, the simulated moving-bed system has largely displaced crystallisation ia xylene separations. The unique feature of the system is that, although the bed is fixed, the feed point shifts to simulate a moving bed (see Adsorption,liquid separation). [Pg.86]

Ordinary diffusion involves molecular mixing caused by the random motion of molecules. It is much more pronounced in gases and Hquids than in soHds. The effects of diffusion in fluids are also greatly affected by convection or turbulence. These phenomena are involved in mass-transfer processes, and therefore in separation processes (see Mass transfer Separation systems synthesis). In chemical engineering, the term diffusional unit operations normally refers to the separation processes in which mass is transferred from one phase to another, often across a fluid interface, and in which diffusion is considered to be the rate-controlling mechanism. Thus, the standard unit operations such as distillation (qv), drying (qv), and the sorption processes, as well as the less conventional separation processes, are usually classified under this heading (see Absorption Adsorption Adsorption, gas separation Adsorption, liquid separation). [Pg.75]

Type of flow pattern(s) involved in an adsorptive bubble separation system depends on the type of process used. For example, bubble fractionation involves two-phase (gas-phase and liquid-phase) bubble flow, while solvent sublation involves multiphase bubble flow in their vertical bubble cells. Foam fractionation involves a two-phase bubble flow in the bottom bubble cell, and a two-phase froth flow in the top foam cell. However, all froth flotation processes (i.e., precipitate flotation, ion flotation, molecular flotation, ore flotation, microflotation, adsorption flotation, macroflotation, and adsorbing colloid flotation) involve multiphase bubble flow and multiphase froth flow. [Pg.97]

The vast majority of modem liquid chromatography systems involve the use of silica gel or a derivative of silica gel, such as a bonded phase, as a stationary phase. Thus, it would appear that most LC separations are carried out by liquid-solid chromatography. Owing to the adsorption of solvent on the surface of both silica and bonded phases, however, the physical chemical characteristics of the separation are more akin to a liquid-liquid distribution system than that of a liquid-solid system. As a consequence, although most modern stationary phases are in fact solids, solute distribution is usually treated theoretically as a liquid-liquid system. [Pg.9]

Chemical separations may first be accomplished by partitioning on the basis of polarity into a series of solvents from non-polar hexane to very polar compounds like methanol. Compounds may also be separated by molecular size, charge, or adsorptive characteristics, etc. Various chromatography methods are utilized, including columns, thin layer (TLC) gas-liquid (GLC), and more recently, high pressure liquid (HPLC) systems. HPLC has proven particularly useful for separations of water soluble compounds from relatively crude plant extracts. Previously, the major effort toward compound identification involved chemical tests to detect specific functional groups, whereas characterization is now usually accomplished by using a... [Pg.4]

Exfoliated graphite - amorphous carbon (EG-AC) composites are widely used in a broad range of applications like adsorption of gases and liquids, separation, and high-surface catalyst supports. They also seem to be attractive for energy- and gas- storage systems. [Pg.443]

The elution volumes of polystyrene and benzene in the size-exclusion mode were 0.98 and 1.78 ml, respectively (Figure 1.4A). This means that separations by molecular size can be achieved between 0.98 and 1.78 ml in this system. In the normal phase mode the elution volumes of octylbenzene and benzene were 1.98 and 2.08 ml, respectively, in n-hexane solution (Figure 1.4B). This type of chromatography is called adsorption or non-aqueous reversed-phase liquid chromatography. These are adsorption liquid chromatography and non-aqueous reversed-phase liquid chromatography. The elution order of the alkylbenzenes in the reversed-phase mode using acetonitrile was reversed... [Pg.5]

Industrial examples of adsorbent separations shown above are examples of bulk separation into two products. The basic principles behind trace impurity removal or purification by liquid phase adsorption are similar to the principles of bulk liquid phase adsorption in that both systems involve the interaction between the adsorbate (removed species) and the adsorbent. However, the interaction for bulk liquid separation involves more physical adsorption, while the trace impurity removal often involves chemical adsorption. The formation and breakages of the bonds between the adsorbate and adsorbent in bulk liquid adsorption is weak and reversible. This is indicated by the heat of adsorption which is <2-3 times the latent heat of evaporahon. This allows desorption or recovery of the adsorbate from the adsorbent after the adsorption step. The adsorbent selectivity between the two adsorbates to be separated can be as low as 1.2 for bulk Uquid adsorptive separation. In contrast, with trace impurity removal, the formation and breakages of the bonds between the adsorbate and the adsorbent is strong and occasionally irreversible because the heat of adsorption is >2-3 times the latent heat of evaporation. The adsorbent selectivity between the impurities to be removed and the bulk components in the feed is usually several times higher than the adsorbent selectivity for bulk Uquid adsorptive separation. [Pg.175]

The reactor system may consist of a number of reactors which can be continuous stirred tank reactors, plug flow reactors, or any representation between the two above extremes, and they may operate isothermally, adiabatically or nonisothermally. The separation system depending on the reactor system effluent may involve only liquid separation, only vapor separation or both liquid and vapor separation schemes. The liquid separation scheme may include flash units, distillation columns or trains of distillation columns, extraction units, or crystallization units. If distillation is employed, then we may have simple sharp columns, nonsharp columns, or even single complex distillation columns and complex column sequences. Also, depending on the reactor effluent characteristics, extractive distillation, azeotropic distillation, or reactive distillation may be employed. The vapor separation scheme may involve absorption columns, adsorption units,... [Pg.226]

The present paper deals with fluidized bed adsorption as an integrative recovery operation. The scope of the contribution is first to describe the concept of the method and the different principles of achieving a combination of solid-liquid separation and chromatography. In the following the main system... [Pg.190]

As a preparation to the following sections, we briefly discuss some aspects of measuring adsorption from fluid phases, including dilute solutions. For the sake of systematics, we divide the treatment into two parts (1) adsorption on disperse systems, sometimes poorly defined, and (ii) the same on well-defined, mostly smooth model surfaces. In case (1) adsorption is almost exclusively determined from solution analysis, i.e. by depletion, so that problems arise with the separation of liquid from solid and the accurate bulk composition determinations. In case (ii), adsorbed amounts can often be determined directly using typical surface analytical techniques. [Pg.197]


See other pages where Adsorption liquid-separation system is mentioned: [Pg.1083]    [Pg.267]    [Pg.236]    [Pg.533]    [Pg.236]    [Pg.533]    [Pg.267]    [Pg.267]    [Pg.4]    [Pg.17]    [Pg.446]    [Pg.175]    [Pg.1516]    [Pg.2014]    [Pg.62]    [Pg.28]    [Pg.295]    [Pg.26]    [Pg.61]    [Pg.127]    [Pg.202]    [Pg.47]    [Pg.195]    [Pg.446]    [Pg.216]    [Pg.95]    [Pg.40]    [Pg.335]    [Pg.190]    [Pg.636]    [Pg.130]    [Pg.10]    [Pg.39]    [Pg.92]    [Pg.1338]    [Pg.1372]    [Pg.1772]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Adsorption separation system

Adsorption systems

Adsorption: liquid separation

Adsorptive separation

Liquid Separation system

Liquid adsorption

Liquids, adsorptive separation

Separable systems

Separation adsorption

© 2024 chempedia.info