Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid samples extraction procedure

The confirmatory procedure should be developed for the same tissues for which the determinative procedure was developed, preferably using the same extraction procedure as used for the determinative portion of the method. Storage and stability data are necessary for dried or liquid sample extracts if MS analyses of the confirmatory samples are to be conducted in a laboratory other than the laboratory of sample preparation. Analytes present in sample extracts must be stable long enough for the samples to be shipped to the MS laboratory and analyzed. [Pg.80]

Liquid Samples. Three procedures were evaluated for extracting pesticides from liquid samples collected at the Horticulture and Agronomy pits. They were the resin sorption method of Junk et al. (2), solvent extraction with hexane-diethylether, and solvent... [Pg.72]

However, protein precipitation usually produces severe matrix effect [54-56], Therefore, in most LC-MS published methods, more extensive sample extraction procedures were used, being liquid-liquid (LLE) and SPE the most frequent techniques. [Pg.147]

Biological matrices are not directly compatible with LC-MS analysis, since these samples tend to block LC columns and contaminate the ion source. Extraction of compounds of interest from biological fluids is required prior to LC-MS/MS analysis [20]. Sample extraction can be achieved off-line with protein precipitation (PP), liquid-liquid extraction (LLE), or solid-phase extraction (SPE) [21]. With the ease of use and sophistication of automated liquid-handling systems, sample extraction procedures in a 96-well format can handle microliter volumes with multiple sorbents per plate and can simplify and expedite SPE method development [22,23]. The technique can be used to routinely develop methods for multiple analytes and examine a set of eluent compositions for each analyte [16]. [Pg.472]

Theoretical and applied aspects of microwave heating, as well as the advantages of its application are discussed for the individual analytical processes and also for the sample preparation procedures. Special attention is paid to the various preconcentration techniques, in part, sorption and extraction. Improvement of microwave-assisted solution preconcentration is shown on the example of separation of noble metals from matrix components by complexing sorbents. Advantages of microwave-assisted extraction and principles of choice of appropriate solvent are considered for the extraction of organic contaminants from solutions and solid samples by alcohols and room-temperature ionic liquids (RTILs). [Pg.245]

Liquid samples might appear to be easier to prepare for LC analysis than solids, particularly if the compounds of interest are present in high concentration. In some cases this may be true and the first example given below requires virtually no sample preparation whatever. The second example, however, requires more involved treatment and when analyzing protein mixtures, the procedure can become very complex indeed involving extraction, centrifugation and fractional precipitation on reversed phases. In general, however, liquid samples become more difficult to prepare when the substances are present at very low concentrations. [Pg.221]

Samples that contain two phases present a special problem depending on the site of the materials of interest. If the substances are known to be associated with one phase only, the sample procedure is simply to separate the two phases by filtration or centrifugation and treat the sample as a liquid or solid sample depending on the phase that contains the materials to be determined. However, if the materials of interest are distributed between the two phases, some in solution and some adsorbed on the surface of the solid, then special extraction procedures will be necessary. [Pg.228]

The most widely employed techniques for the extraction of water samples for triazine compounds include liquid-liquid extraction (LLE), solid-phase extraction (SPE), and liquid-solid extraction (LSE). Although most reports involving SPE are off-line procedures, there is increasing interest and subsequently increasing numbers of reports regarding on-line SPE, the goal of which is to improve overall productivity and safety. To a lesser extent, solid-phase microextraction (SPME), supercritical fluid extraction (SEE), semi-permeable membrane device (SPMD), and molecularly imprinted polymer (MIP) techniques have been reported. [Pg.416]

Specifically for triazines in water, multi-residue methods incorporating SPE and LC/MS/MS will soon be available that are capable of measuring numerous parent compounds and all their relevant degradates (including the hydroxytriazines) in one analysis. Continued increases in liquid chromatography/atmospheric pressure ionization tandem mass spectrometry (LC/API-MS/MS) sensitivity will lead to methods requiring no aqueous sample preparation at all, and portions of water samples will be injected directly into the LC column. The use of SPE and GC or LC coupled with MS and MS/MS systems will also be applied routinely to the analysis of more complex sample matrices such as soil and crop and animal tissues. However, the analyte(s) must first be removed from the sample matrix, and additional research is needed to develop more efficient extraction procedures. Increased selectivity during extraction also simplifies the sample purification requirements prior to injection. Certainly, miniaturization of all aspects of the analysis (sample extraction, purification, and instrumentation) will continue, and some of this may involve SEE, subcritical and microwave extraction, sonication, others or even combinations of these techniques for the initial isolation of the analyte(s) from the bulk of the sample matrix. [Pg.445]

The concept of SPME was first introduced by Belardi and Pawliszyn in 1989. A fiber (usually fused silica) which has been coated on the outside with a suitable polymer sorbent (e.g., polydimethylsiloxane) is dipped into the headspace above the sample or directly into the liquid sample. The pesticides are partitioned from the sample into the sorbent and an equilibrium between the gas or liquid and the sorbent is established. The analytes are thermally desorbed in a GC injector or liquid desorbed in a liquid chromatography (LC) injector. The autosampler has to be specially modified for SPME but otherwise the technique is simple to use, rapid, inexpensive and solvent free. Optimization of the procedure will involve the correct choice of phase, extraction time, ionic strength of the extraction step, temperature and the time and temperature of the desorption step. According to the chemical characteristics of the pesticides determined, the extraction efficiency is often influenced by the sample matrix and pH. [Pg.731]

It is often difficult to define where sample extraction ends and cleanup procedures begin. Sample extracts may be injected directly into a gas or liquid chromatograph in certain cases, but this will be dependent on the analyte, sample matrix, injection, separation and detection system, and the limit of determination (LOD) which is required. It is also more likely that matrix-matched calibration standards will be needed in order to obtain robust quantitative data if no cleanup steps are employed. [Pg.734]

The extent of the cleanup depends on the sample matrix to be analyzed, the extraction procedure, the method of detection and the desired sensitivity. Generally, the cleanup method is liquid-liquid partitioning (LLP), but recently it has become simpler and more reliable to use solid-phase extraction (SPE) columns. [Pg.1131]

A cleanup procedure is usually carried out to remove co-extracted matrix components that may interfere in the chromatographic analysis or be detrimental to the analytical instrument. The cleanup procedure is dependent on the nature of the analyte, the type of sample to be analyzed, and the selectivity and sensitivity of the analytical instrument used in the analysis. Preliminary purification of the sample extracts prior to chromatographic separation involves liquid-liquid partitioning and/or solid-phase extraction (SPE) using charcoal/Celite, Elorisil, carbon black, silica, or aminopropyl-silica based adsorbents or gel permeation chromatography (GPC). [Pg.1154]

Solubilizing all or part of a sample matrix by contacting with liquids is one of the most widely used sample preparation techniques for gases, vapors, liquids or solids. Additional selectivity is possible by distributing the sample between pairs of immiscible liquids in which the analyte and its matrix have different solubilities. Equipment requirements are generally very simple for solvent extraction techniques. Table 8.2 [4,10], and solutions are easy to manipulate, convenient to inject into chromatographic instruments, and even small volumes of liquids can be measured accurately. Solids can be recovered from volatile solvents by evaporation. Since relatively large solvent volumes are used in most extraction procedures, solvent impurities, contaminants, etc., are always a common cause for concern [65,66]. [Pg.891]

There are basically three methods of liquid sampling in GC direct sampling, solid-phase extraction and liquid extraction. The traditional method of treating liquid samples prior to GC injection is liquid-liquid extraction (LLE), but several alternative methods, which reduce or eliminate the use of solvents, are preferred nowadays, such as static and dynamic headspace (DHS) for volatile compounds and supercritical fluid extraction (SFE) and solid-phase extraction (SPE) for semivolatiles. The method chosen depends on concentration and nature of the substances of interest that are present in the liquid. Direct sampling is used when the substances to be assayed are major components of the liquid. The other two extraction procedures are used when the pertinent solutes are present in very low concentration. Modem automated on-line SPE-GC-MS is configured either for at-column conditions or rapid large-volume injection (RLVI). [Pg.182]

There are a number of procedures described in the literature dealing with the extraction of emerging contaminants from solid matrices. For extractions of solid samples, Soxhlet is widely accepted as a robust liquid-solid extraction technique. [Pg.39]

Gagliardi et al. [72] developed a simple high performance liquid chromatographic method for the determination of miconazole and other antimycotics in cosmetic antidandruff formulations. This high performance liquid chromatographic method was carried out on a Discovery RP Amide Ci6 column and spectrophotometric detection was performed at 220 nm. The initial mobile phase was a mixture of acetonitrile and aqueous 0.001 M sodium perchlorate (pH 3) in the ratio of 15 85 (v/ v) then a linear gradient less than 46% acetonitrile in 70 min, and less than 50% in 80 min. The extraction procedure was validated by analyzing samples of shampoo... [Pg.50]

The most common (off-line) sample preparation procedures after protein precipitation are solid phase extraction and liquid-liquid extraction. Multiple vendors and available chemistries utilize 96-well plates for solid phase extraction systems and liquid-liquid extraction procedures. Both extraction process can prepare samples for HPLC/MS/MS assay. Jemal et al.110 compared liquid-liquid extraction in a 96-well plate to semi-automated solid phase extraction in a 96-well plate for a carboxylic acid containing analyte in a human plasma matrix and reported that both clean-up procedures worked well. Yang et al.111 112 described two validated methods for compounds in plasma using semi-automated 96-well plate solid phase extraction procedures. Zimmer et al.113 compared solid phase extraction and liquid-liquid extraction to a turbulent flow chromatography clean-up for two test compounds in plasma all three clean-up approaches led to HPLC/MS/MS assays that met GLP requirements. [Pg.212]


See other pages where Liquid samples extraction procedure is mentioned: [Pg.211]    [Pg.865]    [Pg.855]    [Pg.159]    [Pg.333]    [Pg.481]    [Pg.149]    [Pg.91]    [Pg.94]    [Pg.307]    [Pg.309]    [Pg.434]    [Pg.703]    [Pg.822]    [Pg.825]    [Pg.1178]    [Pg.382]    [Pg.418]    [Pg.902]    [Pg.24]    [Pg.117]    [Pg.202]    [Pg.202]    [Pg.89]    [Pg.204]    [Pg.210]    [Pg.50]    [Pg.276]    [Pg.113]    [Pg.195]    [Pg.1253]    [Pg.21]    [Pg.307]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Extraction procedure

Extraction, sampling

Extractive procedures

Liquid samples

Sample extract

Sample extraction

Sample extraction procedure

Sampling extractive

Sampling procedure

© 2024 chempedia.info