Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbents, silica-based

Eor the selective pre-concentration of deactivated phenols a new silica-based material with the grafted 2,3,5-triphenyltetrazole was proposed. This method is based on the formation of molecular chai ge-transfer comlexes of 2,3,5-triphenyltetrazole (7t-acceptor) with picric acid (7t-donor) in the phase of the sorbent. Proposed SPE is suitable for HPEC analysis of nitrophenols after their desorption by acetonitrile. Test-system for visual monitoring of polynitrophenols under their maximum concentration limits was developed using the proposed adsorbent. [Pg.254]

Presently, the most successful adsorbents arc microporous carbons, but there is considerable interest in other possible adsorbents, mainly porous polymers, silica based xerogels or zeolite type materials. Regardless of the type of material, the above principles still apply to achieving a satisfactory storage capacity. The limiting storage uptake will be directly proportional to the accessible micropore volume per volume of storage capacity. [Pg.281]

Mcntasty el al. [35] and others [13, 36] have measured methane uptakes on zeolites. These materials, such as the 4A, 5A and 13X zeolites, have methane uptakes which are lower than would be predicted using the above relationship. This suggests that either the zeolite cavity is more attractive to 77 K nitrogen than a carbon pore, or methane at 298 K, 3.4 MPa, is attracted more to a carbon pore than a zeolite. The latter proposition is supported by the modeling of Cracknel et al. [37, 38], who show that methane densities in silica cavities will be lower than for the equivalent size parallel slit shaped pore of their model carbon. Results reported by Ventura [39] for silica xerogels lead to a similar conclusion. Thus, porous silica adsorbents with equivalent nitrogen derived micropore volumes to carbons adsorb and deliver less methane. For delivery of 150 V./V a silica based adsorbent would requne a micropore volume in excess of 0.70 ml per ml of packed vessel volume. [Pg.287]

Select mobile phases for HPSEC based on their ability to dissolve the sample and their compatibility with the column. Zorbax PSM columns are compatible with a wide variety of organic and aqueous mobile phases (Table 3.4), but analysts should avoid aqueous mobile phases with a pH greater than 8.5. As mentioned earlier, select mobile phases that minimize adsorption between samples and silica-based packings. Sample elution from the column after the permeation volume indicates that adsorption has occurred. If adsorption is observed or suspected, select a mobile phase that will be more strongly adsorbed onto the silica surface than the sample. For example, N,N-dimethyl-formamide (DMF) is often used for polyurethanes and polyacrylonitrile because it eliminates adsorption and dissolves the polymers. When aqueous mobile phases are required, highly polar macromolecules such as Carbowax can be used to coat the silica surface and eliminate adsorption. Table 3.5 provides a list of recommended mobile-phase conditions for some common polymers. [Pg.82]

The exact nature of the dead volume is complex and, in fact, will vary from solute to solute due to the exclusion properties of the stationary phase, particularly if the stationary phase or support is silica or silica based. Thus, to measure (Vo) accurately, a non-adsorbed solute of the same molecular size as the solute should be used and then the correct retention volume (V r) can be calculated and employed for identification purposes. [Pg.41]

A cleanup procedure is usually carried out to remove co-extracted matrix components that may interfere in the chromatographic analysis or be detrimental to the analytical instrument. The cleanup procedure is dependent on the nature of the analyte, the type of sample to be analyzed, and the selectivity and sensitivity of the analytical instrument used in the analysis. Preliminary purification of the sample extracts prior to chromatographic separation involves liquid-liquid partitioning and/or solid-phase extraction (SPE) using charcoal/Celite, Elorisil, carbon black, silica, or aminopropyl-silica based adsorbents or gel permeation chromatography (GPC). [Pg.1154]

From the above data, it would appear that methane densities in pores with carbon surfaces are higher than those of other materials. In the previous section it was pointed out that to maximize natural gas or methane storage, it is necessary to maximize micropore volume, not per unit mass of adsorbent, but per unit volume of storage vessel. Moreover, a porous carbon filled vessel will store and deliver more methane than a vessel filled with a silica based or polymer adsorbent which has an equivalent micropore volume fraction of the storage vessel. [Pg.309]

Similarly, Hg(n) binding to thiol-functionalized mesoporous silica for which effective access to all the binding sites (100% of SH groups com-plexed with Hg(n) was achieved in micelle-templated mesostructures with pore diameters larger than 2.0 nm, whereas incomplete filling was always observed with corresponding amorphous silica-based adsorbents.37... [Pg.39]

In this procedure the soil sample (spiked with isotopic marker compounds) is processed in a two-part enrichment procedure (Fig. 5.3). In part I, a mixture of the sample and sodium sulphate is subject to solvent extraction, and the extract is, in the same process, passed through a series of silica-based adsorbents and then through the carbon/glass fibre adsorbent. The extract passes through the adsorbents in the following order potassium silicate, silica gel, cesium or potassium silicate, silica gel and finally an activated-carbon... [Pg.181]

Bonded-Phase Supports The bonded-phase supports usually overcome plethora of the nagging problems which is mostly encountered with adsorbed-liquid phases. Here the molecules, comprising the stationary phase, i.e., the surfaces of the silica particles, are covalently bonded to a silica-based support particle. [Pg.453]

The development of new porous materials that could be used as adsorbents, catalysts, catalyst supports, molecular sieves, etc. [1], are very well discussed by several authors [2-9], describing interesting properties and characteristics of materials such as MCM-41, MCM-48, M41S, FSM16, lamellar phases, intercalation products, special CMS (carbon molecular sieves), fullerenes, carbon nanotubes, etc. being some of them silica based materials, and carbon based the others. [Pg.701]

Figure S. Structure of hydrophobically substituted calix[4]resorcinarene adsorbed onto silica-based resin for HPLC separations (see ref 21). Figure S. Structure of hydrophobically substituted calix[4]resorcinarene adsorbed onto silica-based resin for HPLC separations (see ref 21).
Sample pre-concentration was also achieved for gaseous samples. A flowthrough Pyrex chip consisting of the silica-based solid absorbent was used for pre-concentration of the BTX gaseous mixture. A thin-film heater was used to desorb the adsorbed gas molecules, which flowed downstream for UV absorbance detection. LOD of 1 ppm (toluene) was achieved as compared to 100 ppm without pre-concentration [131,715]. With an additional air-cooled cold-trap channel... [Pg.128]

In addition to the silica-based materials mentioned above, modem polymers are widely used for TTA and QTA sample preparation allowing SPE not impaired by undesirable silanol activities. HLB Oasis (Waters) is the tradename for a hydrophilic-lipophilic balance reversed-phase sorbent enabling lipophilic interaction to benzene moieties and hydrophilic interactions to pyrrolidone groups as present in the macroporous copolymer of poly(divinylbenzene-co-iV-vinylpyrrolidone). Elution of analytes is often performed with solvents containing MeOH or ACN. Applying this adsorbent TA such as atropine and scopolamine were extracted from human viscera [15], human serum [97-99], human urine [12] as well as from rat plasma and brain microdialysate [77], Furthermore, this hydrophilic-lipophilic balance phase was also suitable for extraction of the QTA trospium from human and rat plasma [77, 84] and methyl scopolamie from rat plasma [77] (Table 4). [Pg.311]

The greater part of the modification studies of silica with boron compounds has been directed towards achieving an understanding of the surface structure of silica and silica based adsorbents, utilizing the quantitative reactions with boron containing probe molecules. Because hydroxyl type specificity occurred in some reactions, boron compounds were used to make a distinction between isolated and vicinal surface hydroxyls. Diborane was even utilized as a probe to distinguish surface silanols from hydration water.6,7... [Pg.299]

In 1995 Schwarz et al.159 described novel heterocyclic structures able to adsorb selectively immunoglobulins. The structures contained sulfur and nitrogen. Reported ligands were 2-mercapto-pyridine,2-mercapto-pyrimidine, and mercapto-thiazoline. These structures were chemically immobilized on silica and agarose beads using epoxy-activated matrices. Binding capacities for silica based material were about 25 mg of IgG per milliliter of resin, while for agarose beads it was about 18 mg/mL. [Pg.585]


See other pages where Adsorbents, silica-based is mentioned: [Pg.150]    [Pg.208]    [Pg.122]    [Pg.9]    [Pg.90]    [Pg.104]    [Pg.5]    [Pg.227]    [Pg.27]    [Pg.236]    [Pg.126]    [Pg.391]    [Pg.490]    [Pg.31]    [Pg.33]    [Pg.513]    [Pg.62]    [Pg.122]    [Pg.203]    [Pg.207]    [Pg.225]    [Pg.350]    [Pg.17]    [Pg.38]    [Pg.208]    [Pg.351]    [Pg.139]    [Pg.208]   
See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Extraction, solid phase using silica-based adsorbent

Silica based

Silica, adsorbent

© 2024 chempedia.info