Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser-Raman spectroscopy sampling techniques

The future of Raman microspectroscopy is probably imaging and optical near-field nano-Raman spectroscopy [529], cfr. Chp. 5.5.2. While conventional laser Raman spectroscopy samples 10 g (mm ), /zRS handles 10 g (nm ) and near-field Raman spectroscopy 10 g (nm ). Mobile Raman microscopy (MRM) allows in situ Raman analysis [530]. One can expect further developments in the field of NIR multichannel Raman spectroscopy with the advent of 2D array detectors offering extended response in the NIR. With these 2D sensors it wiU become possible to apply in the NIR region the powerful techniques already developed in the visible, such as confocal line imaging techniques or multisite remote analysis with optical fibres. [Pg.536]

Progress in the Raman spectroscopic study of carbohydrates became possible during the past few years owing to the introduction of laser sources. Before discussing the results of laser-Raman spectroscopy applied to carbohydrates, we shall give a brief recapitulation of the physical principles of the Raman effect. Experimental techniques of infrared spectroscopy have been described in previous reviews,116,17 but no such description has been given for the Raman method. That is why the Description Section, which follows, will include the physical fundamentals of the method, as well as the sampling techniques. [Pg.67]

In principle, laser Raman spectroscopy provides complementary data to IR spectroscopy, but this technique is difficult to apply successfully because of its lower sensitivity, the high fluorescence background of some supports, and the potential destruction of the sample by the incident laser radiation. Raman spectroscopy was used to provide structural evidence for metal-metal and metal-oxygen bonds on the surface-bound clusters such as [HjRejfCOlij]" on MgO (752) and [HOs3(CO)uOM=](M=Si, Al) on SiO and AljOj (20). [Pg.298]

There is a tendency in discussing a new technique to point out its advantages and that is the approach taken here for laser Raman spectroscopy. It is worth emphasizing that fluorescence still presents a major sampling problem for most commercial materials in the Raman and that at this time infrared is much more widely applicable to applied polymer science. Infrared is generally the more effective tool for trace analyses and for quantitative data. [Pg.726]

Although Raman spectroscopy does not employ absorption of infrared radiation as its fundamental principle of operation, it is combined with other infrared spectroscopies into a joint section. Results obtained with various Raman spectroscopies as described below cover vibrational properties of molecules at interfaces complementing infrared spectroscopy in many cases. A general overview of applications of laser Raman spectroscopy (LRS) as applied to electrochemical interfaces has been provided [342]. Spatially offset Raman spectroscopy (SORS) enables spatially resolved Raman spectroscopic investigations of multilayered systems based on the collection of scattered light from spatial regions of the samples offset from the point of illumination [343]. So far this technique has only been applied in various fields outside electrochemistry [344]. Fourth-order coherent Raman spectroscopy has been developed and applied to solid/liquid interfaces [345] applications in electrochemical systems have not been reported so far. [Pg.103]

An advantage of laser Raman spectroscopy over other spectroscopic techniques is that the sample does not require special... [Pg.599]

Just as in absorption spectroscopy, the sensitivity may be enhanced by difference laser Raman spectroscopy, where the pump laser passes alternately through a cell containing the sample molecules dissolved in some liquid and through a cell containing only the liquid. The basic advantages of this difference technique are the cancellation of unwanted Raman bands of the solvent in the spectrum of the solution and the accurate determination of small frequency shifts due to interactions with the solvent molecules. [Pg.157]

Cobalt complexes are the specific area of interest for a paper dealing with the technology of spinning-cell Fourier transform Raman spectroscopy. The technique uses near-IR light and, because of the rapidly spinning cell, avoids the problems of sample burning and should be most useful for the study of delicate carbonyl species. Clusters are studied somewhat differently, following UV laser photolysis, in a paper published by Belyaev et. ... [Pg.147]

Raman spectroscopy is a vibrational spectroscopic technique which can be a useful probe of protein structure, since both intensity and frequency of vibrational motions of the amino acid side chains or polypeptide backbone are sensitive to chemical changes and the microenvironment around the functional groups. Thus, it can monitor changes related to tertiary structure as well as secondary structure of proteins. An important advantage of this technique is its versatility in application to samples which may be in solution or solid, clear or turbid, in aqueous or organic solvent. Since the concentration of proteins typically found in food systems is high, the classical dispersive method based on visible laser Raman spectroscopy, as well as the newer technique known as Fourier-transform Raman spectroscopy which utilizes near-infrared excitation, are more suitable to study food proteins (Li-Chan et aL, 1994). In contrast the technique based on ultraviolet excitation, known as resonance Raman spectroscopy, is more commonly used to study dilute protein solutions. [Pg.15]

Laser-Raman spectroscopy is an ideal technique for contactless monitoring of extruded films, sheets, and moving fibres for fhe evaluafion of crystallinity. These are perhaps ideal samples since they can have a relatively smooth surface, which can be held at the focus of the laser beam. A difficult sampling problem is that of a rough surface such as a bed of polymer pellets, when the roughness exceeds the depth of focus of the Raman collection lens. One solution is to grind the sample to produce a fine powder. [Pg.60]

Because Raman spectroscopy requires one only to guide a laser beam to the sample and extract a scattered beam, the technique is easily adaptable to measurements as a function of temperature and pressure. High temperatures can be achieved by using a small furnace built into the sample compartment. Low temperatures, easily to 78 K (liquid nitrogen) and with some diflSculty to 4.2 K (liquid helium), can be achieved with various commercially available cryostats. Chambers suitable for Raman spectroscopy to pressures of a few hundred MPa can be constructed using sapphire windows for the laser and scattered beams. However, Raman spectroscopy is the characterizadon tool of choice in diamond-anvil high-pressure cells, which produce pressures well in excess of 100 GPa. ... [Pg.434]

Since the vibrational spectra of sulfur allotropes are characteristic for their molecular and crystalline structure, vibrational spectroscopy has become a valuable tool in structural studies besides X-ray diffraction techniques. In particular, Raman spectroscopy on sulfur samples at high pressures is much easier to perform than IR spectroscopical studies due to technical demands (e.g., throughput of the IR beam, spectral range in the far-infrared). On the other hand, application of laser radiation for exciting the Raman spectrum may cause photo-induced structural changes. High-pressure phase transitions and structures of elemental sulfur at high pressures were already discussed in [1]. [Pg.82]

When investigating opaque or transparent samples, where the laser light can penetrate the surface and be scattered into deeper regions, Raman light from these deeper zones also contributes to the collected signal and is of particular relevance with non-homogeneous samples, e.g., multilayer systems or blends. The above equation is only valid, if the beam is focused on the sample surface. Different considerations apply to confocal Raman spectroscopy, which is a very useful technique to probe (depth profile) samples below their surface. This nondestructive method is appropriate for studies on thin layers, inclusions and impurities buried within a matrix, and will be discussed below. [Pg.529]

Another technique of vibrational spectroscopy suited for the characterization of solids is that of Raman spectroscopy. In this methodology, the sample is irradiated with monochromatic laser radiation, and the inelastic scattering of the source energy is used to obtain a vibrational spectrum of the analyte [20]. Since... [Pg.7]

Sampling techniques for Raman spectroscopy are relatively general since the only requirement is that the monochromatic laser beam irradiate the sample of interest and the scattered radiation be focused upon the detector. [Pg.71]

Raman spectroscopy is an inelastic lightscattering technique, in which an analyst directs a monochro-mated laser beam onto a sample, and determines the frequency and intensity of the scattered light. [Pg.484]

Further details of the theory and application of Raman spectroscopy in polymer studies can be found elsewhere (1. 9). However, vibrational frequencies of functional groups in polymers can be characterized from the spacing of the Raman lines and thus information complementary to IR absorption spectroscopy can be obtained. In addition, since visible radiation is used the technique can be applied to aqueous media in contrast to IR spectroscopy, allowing studies of synthetic polyelectrolytes and biopolymers to be undertaken. Conformation and crystallinity of polymers have also been shown to influence the Raman spectra Q.) while the possibility of studying scattering from small sample volumes in the focussed laser beam (-100 pm diameter) can provide information on localized changes in chemical structure. [Pg.36]


See other pages where Laser-Raman spectroscopy sampling techniques is mentioned: [Pg.140]    [Pg.356]    [Pg.17]    [Pg.297]    [Pg.305]    [Pg.288]    [Pg.288]    [Pg.204]    [Pg.274]    [Pg.306]    [Pg.457]    [Pg.1063]    [Pg.373]    [Pg.280]    [Pg.3]    [Pg.515]    [Pg.704]    [Pg.497]    [Pg.212]    [Pg.310]    [Pg.318]    [Pg.431]    [Pg.176]    [Pg.32]    [Pg.705]    [Pg.76]    [Pg.551]    [Pg.135]    [Pg.210]    [Pg.64]    [Pg.240]   
See also in sourсe #XX -- [ Pg.70 , Pg.71 , Pg.72 ]

See also in sourсe #XX -- [ Pg.44 , Pg.70 , Pg.71 , Pg.72 ]




SEARCH



Laser sampling

Laser spectroscopy

Raman lasers

Raman spectroscopy sampling techniques

Raman techniques

Sample Raman spectroscopy

Sampling techniques

Sampling techniques samples

Spectroscopy laser techniques

Spectroscopy techniques

© 2024 chempedia.info