Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser monochromatic

In ellipsometry monochromatic light such as from a He-Ne laser, is passed through a polarizer, rotated by passing through a compensator before it impinges on the interface to be studied [142]. The reflected beam will be elliptically polarized and is measured by a polarization analyzer. In null ellipsometry, the polarizer, compensator, and analyzer are rotated to produce maximum extinction. The phase shift between the parallel and perpendicular components A and the ratio of the amplitudes of these components, tan are related to the polarizer and analyzer angles p and a, respectively. The changes in A and when a film is present can be related in an implicit form to the complex index of refraction and thickness of the film. [Pg.126]

Such electronic excitation processes can be made very fast with sufficiently intense laser fields. For example, if one considers monochromatic excitation with a wavenumber in the UV region (60 000 cm ) and a coupling strength / he 4000 (e.g. 1 Debye in equation (A3.13.59), / 50 TW cm ),... [Pg.1062]

Continuous wave (CW) lasers such as Ar and He-Ne are employed in conmionplace Raman spectrometers. However laser sources for Raman spectroscopy now extend from the edge of the vacuum UV to the near infrared. Lasers serve as an energetic source which at the same hme can be highly monochromatic, thus effectively supplying the single excitation frequency, v. The beams have a small diameter which may be... [Pg.1199]

Modern commercial lasers can produce intense beams of monochromatic, coherent radiation. The whole of the UV/visible/IR spectral range is accessible by suitable choice of laser. In mass spectrometry, this light can be used to cause ablation, direct ionization, and indirect ionization (MALDI). Ablation (often together with a secondary ionization mode) and MALDI are particularly important for examining complex, intractable solids and large polar biomolecules, respectively. [Pg.136]

Lasers are used to deliver a focused, high density of monochromatic radiation to a sample target, which is vaporized and ionized. The ions are detected in the usual way by any suitable mass spectrometer to produce a mass spectrum. The yield of ions is often increased by using a secondary ion source or a matrix. [Pg.384]

Until the advent of lasers the most intense monochromatic sources available were atomic emission sources from which an intense, discrete line in the visible or near-ultraviolet region was isolated by optical filtering if necessary. The most often used source of this kind was the mercury discharge lamp operating at the vapour pressure of mercury. Three of the most intense lines are at 253.7 nm (near-ultraviolet), 404.7 nm and 435.7 nm (both in the visible region). Although the line width is typically small the narrowest has a width of about 0.2 cm, which places a limit on the resolution which can be achieved. [Pg.122]

Lasers (see Chapter 9) are sources of intense, monochromatic radiation which are ideal for Raman spectroscopy and have entirely replaced atomic emission sources. They are more convenient to use, have higher intensity and are more highly monochromatic for example, the line width at half-intensity of 632.8 nm (red) radiation from a helium-neon laser can be less than 0.05 cm. ... [Pg.122]

The use of vibrational Raman spectroscopy in qualitative analysis has increased greatly since the introduction of lasers, which have replaced mercury arcs as monochromatic sources. Although a laser Raman spectrometer is more expensive than a typical infrared spectrometer used for qualitative analysis, it does have the advantage that low- and high-wavenumber vibrations can be observed with equal ease whereas in the infrared a different, far-infrared, spectrometer may be required for observations below about 400 cm. ... [Pg.159]

A progression with v = 2, illustrated in Figure 7.18, can be observed only in emission. Its observation could result from a random population of v levels or it could be observed on its own under rather special conditions involving monochromatic excitation from v" = 0 to if = 2 with no collisions occurring before emission. This kind of excitation could be achieved with a tunable laser. [Pg.245]

From 1960 onwards, fhe increasing availabilify of intense, monochromatic laser sources provided a fremendous impetus to a wide range of spectroscopic investigations. The most immediately obvious application of early, essentially non-tunable, lasers was to all types of Raman spectroscopy in the gas, liquid or solid phase. The experimental techniques. [Pg.362]

The phenomenon of multiphoton dissociation finds a possible application in the separation of isotopes. For this purpose it is not only the high power of the laser that is important but the fact that it is highly monochromatic. This latter property makes it possible, in favourable circumstances, for the laser radiation to be absorbed selectively by a single isotopic molecular species. This species is then selectively dissociated resulting in isotopic enrichment both in the dissociation products and in the undissociated material. [Pg.376]

Lasers can be coupled efficiently to fiber optic devices to deHver intense monochromatic light precisely to the desired region of the body, including internal organs (see Fiber optics). As in other cases of laser-induced photochemistry, biphotonic effects may be important (87). Lasers also offer the advantage of being able to concentrate the incident energy in a spectral bandpass matched to the absorption band of the sensitizer. [Pg.394]


See other pages where Laser monochromatic is mentioned: [Pg.18]    [Pg.36]    [Pg.7]    [Pg.23]    [Pg.351]    [Pg.153]    [Pg.18]    [Pg.36]    [Pg.7]    [Pg.23]    [Pg.351]    [Pg.153]    [Pg.235]    [Pg.268]    [Pg.1886]    [Pg.119]    [Pg.120]    [Pg.122]    [Pg.128]    [Pg.130]    [Pg.384]    [Pg.692]    [Pg.123]    [Pg.339]    [Pg.402]    [Pg.122]    [Pg.110]    [Pg.165]    [Pg.154]    [Pg.154]    [Pg.191]    [Pg.208]    [Pg.1]    [Pg.2]    [Pg.3]    [Pg.15]    [Pg.130]    [Pg.388]    [Pg.111]    [Pg.395]    [Pg.37]    [Pg.310]    [Pg.310]    [Pg.314]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Monochromatic radiation diode lasers

Monochromaticity

Monochromatization

© 2024 chempedia.info