Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radiation scattered

The sensitivity curves are plots of maximum achieved sensitivity as a function of thickness of the object for a given focal spot size and source to detector distance. The best attainable sensitivity in image intensifier systems is a function of tube voltage, current, scattered radiation and the screen gamma. As a first step, stainless steel plates with thicknesses ranging from 5 mm-30 mm in steps of 5 mm were chosen. These plates had a length of 950 mm and width of 280 mm. The plate is positioned very close and at the center to the LI. tube. The extraneous... [Pg.444]

In practice this simple equation is complicated by the fact that p depends on the radiation energy and beside the radiation absorption there is also scattered radiation generated by the penetrated object. [Pg.562]

Fig. 2 shows the response of a C2 film system on a step wedge (wall thickness range 2. .. 18 mm) exposed with a X-ray tube at 160 kV. For the exposure withy-rays (Irl92 or Co60) corresponding linear relationships are obtained. From this linear relationship it is followed, that the influence of the scattered radiation and the energy dependence of the absorption coefficient can be considered by an effective absorption coefficientPcff in equation (1). [Pg.562]

Measurement of the total Raman cross-section is an experimental challenge. More connnon are reports of the differential Raman cross-section, doj /dQ, which is proportional to the intensity of the scattered radiation that falls within the element of solid angle dQ when viewing along a direction that is to be specified [H]. Its value depends on the design of the Raman scattering experiment. [Pg.1194]

Unlike the typical laser source, the zero-point blackbody field is spectrally white , providing all colours, CO2, that seek out all co - CO2 = coj resonances available in a given sample. Thus all possible Raman lines can be seen with a single incident source at tOp Such multiplex capability is now found in the Class II spectroscopies where broadband excitation is obtained either by using modeless lasers, or a femtosecond pulse, which on first principles must be spectrally broad [32]. Another distinction between a coherent laser source and the blackbody radiation is that the zero-point field is spatially isotropic. By perfonuing the simple wavevector algebra for SR, we find that the scattered radiation is isotropic as well. This concept of spatial incoherence will be used to explain a certain stimulated Raman scattering event in a subsequent section. [Pg.1197]

We have seen that the strength of Raman scattered radiation is directly related to the Raman scattering cross-section (Oj ). The fact that this cross-section for Raman scattering is typically much weaker than that for absorption (oj limits conventional SR as a sensitive analytical tool compared to (Imear) absorption... [Pg.1205]

The amplitude and therefore the intensity, of the scattered radiation is detennined by extending the Fourier transfomi of equation (B 1.8.11 over the entire crystal and Bragg s law expresses die fact that this transfomi has values significantly different from zero only at the nodes of the reciprocal lattice. The amplitude varies, however, from node to node, depending on the transfomi of the contents of the unit cell. This leads to an expression for the structure amplitude, denoted by F(hld), of the fomi... [Pg.1366]

The 3D MoRSE code is closely related to the molecular transform. The molecular transform is a generalized scattering function. It can be used to predict the intensity of the scattered radiation i for a known molecular structure in X-ray and electron diffraction experiments. The general molecular transform is given by Eq. (22), where i(s) is the intensity of the scattered radiation caused by a collection of N atoms located at points r. ... [Pg.415]

Accuracy Under normal conditions relative errors of 1-5% are easily obtained with UV/Vis absorption. Accuracy is usually limited by the quality of the blank. Examples of the type of problems that may be encountered include the presence of particulates in a sample that scatter radiation and interferents that react with analytical reagents. In the latter case the interferant may react to form an absorbing species, giving rise to a positive determinate error. Interferents also may prevent the analyte from reacting, leading to a negative determinate error. With care, it maybe possible to improve the accuracy of an analysis by as much as an order of magnitude. [Pg.409]

An important question to consider when using a flame as an atomization source, is how to correct for the absorption of radiation by the flame. The products of combustion consist of molecular species that may exhibit broad-band absorption, as well as particulate material that may scatter radiation from the source. If this spectral interference is not corrected, then the intensity of the transmitted radiation decreases. The result is an apparent increase in the sam-... [Pg.418]

A method in which the intensity of scattered radiation is measured at an angle of 90° to the source. [Pg.442]

Determining Concentration by Nephelometry In nephelometry, the relationship between the intensity of scattered radiation, hy and the concentration (% w/v) of scattering particles is given as... [Pg.443]

Spectroscopic measurements may also involve the scattering of light by a particulate form of the analyte, fn turbidimetry, the decrease in the radiation s transmittance through the sample is measured and related to the analyte s concentration through Beer s law. fn nephelometry we measure the intensity of scattered radiation, which varies linearly with the analyte s concentration. [Pg.446]

It was predicted in 1923 by Smekal and shown experimentally in 1928 by Raman and Krishnan that a small amount of radiation scattered by a gas, liquid or solid is of increased or decreased wavelength (or wavenumber). This is called the Raman effect and the scattered radiation with decreased or increased wavenumber is referred to as Stokes or anti-Stokes Raman scattering, respectively. [Pg.122]

In outline, the method used is to pass the monochromatic radiation through the gaseous sample and disperse and detect the scattered radiation. Usually, this radiation is collected in directions normal to the incident radiation in order to avoid this incident radiation passing to the detector. [Pg.122]

The scattered radiation V3 is to high wavenumber of Vj (i.e. on the anti-Stokes side) and is coherent, unlike spontaneous Raman scattering hence the name CARS. As a consequence of the coherence of the scattering and the very high conversion efficiency to V3, the CARS radiation forms a collimated, laser-like beam. [Pg.367]

Fig. 1. Magnified view of a part of a lead Bucky diaphragm (grid) used to diminish scattered radiation from striking a detector. The grid is placed between... Fig. 1. Magnified view of a part of a lead Bucky diaphragm (grid) used to diminish scattered radiation from striking a detector. The grid is placed between...
Fig. 6. Schematic illustration of the relationships of the original y-ray and the scattered radiations for Compton scattering where E is the energy of the incident photon, E is the energy of the recoiling electron, and E is the energy of the scattered photon. Fig. 6. Schematic illustration of the relationships of the original y-ray and the scattered radiations for Compton scattering where E is the energy of the incident photon, E is the energy of the recoiling electron, and E is the energy of the scattered photon.
THE USE OF INTENSITY OF COHERENT AND NON-COHERENT SCATTERED RADIATION OF THE X-RAY TUBE FOR THE COMPENSATION OF MATRIX EFFECTS AT THE ANALYSIS OF SOLUTIONS BY X-RAY FLUORESCENCE... [Pg.444]

For water, organic and water-organic metal salts mixtures the dependence of integral and spectral intensities of coherent and non-coherent scattered radiation on the atomic number (Z), density, oscillator layer thickness, chemical composition, and the conditions of the registering of analytical signals (voltage and tube current, tube anode material, crystal-analyzer) was investigated. The dependence obtained was compared to that for the solid probes (metals, alloys, pressed powder probes). [Pg.444]


See other pages where Radiation scattered is mentioned: [Pg.444]    [Pg.469]    [Pg.469]    [Pg.470]    [Pg.473]    [Pg.564]    [Pg.1152]    [Pg.1178]    [Pg.1195]    [Pg.1198]    [Pg.1199]    [Pg.1205]    [Pg.1205]    [Pg.1211]    [Pg.1214]    [Pg.1364]    [Pg.1378]    [Pg.2820]    [Pg.500]    [Pg.441]    [Pg.441]    [Pg.442]    [Pg.442]    [Pg.442]    [Pg.443]    [Pg.775]    [Pg.122]    [Pg.49]    [Pg.318]    [Pg.318]    [Pg.444]   
See also in sourсe #XX -- [ Pg.45 ]

See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.142 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.7 , Pg.8 ]

See also in sourсe #XX -- [ Pg.17 , Pg.27 ]

See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.142 ]

See also in sourсe #XX -- [ Pg.197 ]




SEARCH



Radiation scatter

Radiation scattering

© 2024 chempedia.info