Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pellets polymers

Low molecular weight solids were dispersed in KBr pellets polymer films were cast from CHCI3. Intrinsic viscosities were measured by standard procedures using a Cannon Ubbelohde dilution viscometer. [Pg.8]

Economics Raw materials and utilities, per metric ton of pelletized polymer ... [Pg.224]

Demeo and Kucherovsky (2005) reconunended the use of fabrics that offer protection against multiple threats. The authors suggested that a radiation-protective material such as barium, bismuth or tungsten can be mixed with a powdered/pelletized polymer or a suitable liquid/emulsioa This mixture can then be combined with or layered upon another fabric such as Kevlar to provide multiple protection capabilities. ... [Pg.272]

Low-shrink polypropylene fibers requires presence of additive that nucleates polymer crystals within the target polypropylene after exposure to sufficient heat to melt the initial pelletized polymer and allowing such a melt to cool." The preferred rigidifying compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as sodium benzoate, certain sodium and lithium phosphate salts (such as sodium 2,2 -methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11)."... [Pg.121]

Typical examples of solid samples include large particulates, such as those found in ores smaller particulates, such as soils and sediments tablets, pellets, and capsules used in dispensing pharmaceutical products and animal feeds sheet materials, such as polymers and rolled metals and tissue samples from biological specimens. [Pg.196]

Sorted plastic packaging materials are shipped, usually in bales, to processing plants to be converted to polymer resins. The bales are broken and the bottles sorted to ensure that only one type of polymer is further processed. Processing consists of chopping and grinding the bottles into flakes. These flakes are washed. Processing steps such as flotation are used to remove polymeric contaminants from the flakes (15,16). The flakes are melted and converted into pellets. [Pg.230]

The economics of recycling PET are more favorable than recycling HDPE. To iacrease the recycling of HDPE, the separation of bottles made of these two plastics could be omitted and a mixture processed. Coarse, light-colored powders of the two polymers have been prepared by an experimental soHd state shear extmsion pulverization process (55). The powder has been successfully injection molded without pelletization. [Pg.231]

Acrylamide copolymers are effective iron ore pellet binders (118). When the ore slurry in water has a pH above 8, anionic polymers are effective. If the ore is acid washed to remove manganese, then a cationic polymer is effective. [Pg.143]

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

Eor some uses, higher molecular weight polymer consisting of 150—200 repeat units is required. Such polymer usually is prepared by soHd-state polymerization in which pellets are heated under an inert atmosphere to 200—240°C. The 2G is removed continuously. The rate of polymerization depends on particle size, end group composition, and crystallinity (65). [Pg.328]

Many methods for the conversion of acid copolymers to ionomers have been described by Du Pont (27,28). The chemistry involved is simple when cations such as sodium or potassium are involved, but conditions must be controlled to obtain uniform products. Solutions of sodium hydroxide or methoxide can be fed to the acid copolymer melt, using a high shear device such as a two-roU mill to achieve uniformity. AH volatile by-products are easily removed during the conversion, which is mn at about 150°C. A continuous process has been described, using two extmders, the first designed to plasticate the feed polymer and mix it rapidly with the metal compound, eg, zinc oxide, at 160°C (28). Acetic acid is pumped into the melt to function as an activator. Volatiles are removed in an extraction-extmder which follows the reactor-extmder, and the anhydrous melt emerges through a die-plate as strands which are cut into pellets. [Pg.408]

An unusual slurry process which works well with sodium hydroxide is based on diffusion of the aqueous reagent into pellets of acid polymer (28). The concentration of ions in the Hquid phase is preferably two to four times the stoichiometric level, and the temperature is maintained at 50—100°C. [Pg.408]

A process based on saponification of ethylene—acrylate ester copolymers has been practiced commercially in Japan (29). The saponification naturally produces fully neutralized polymer, and it is then necessary to acidify in order to obtain a pardy neutralized, melt-processible product. Technology is described to convert the sodium ionomer produced by this process to the zinc type by soaking pellets in zinc acetate solution, followed by drying (29). [Pg.408]

Some slurry processes use continuous stirred tank reactors and relatively heavy solvents (57) these ate employed by such companies as Hoechst, Montedison, Mitsubishi, Dow, and Nissan. In the Hoechst process (Eig. 4), hexane is used as the diluent. Reactors usually operate at 80—90°C and a total pressure of 1—3 MPa (10—30 psi). The solvent, ethylene, catalyst components, and hydrogen are all continuously fed into the reactor. The residence time of catalyst particles in the reactor is two to three hours. The polymer slurry may be transferred into a smaller reactor for post-polymerization. In most cases, molecular weight of polymer is controlled by the addition of hydrogen to both reactors. After the slurry exits the second reactor, the total charge is separated by a centrifuge into a Hquid stream and soHd polymer. The solvent is then steam-stripped from wet polymer, purified, and returned to the main reactor the wet polymer is dried and pelletized. Variations of this process are widely used throughout the world. [Pg.384]

Extrusion. In general, extmsion is the process of forcing a polymer melt through a die (104,105). Typical extmsion appHcations include initial resin pelletization after manufacture and production of film, sheet, pipe, tubing, and insulated wire. The HDPE extmsion temperature is around 150°C, the pressure 40—50 MPa (5800—7250 psi). An extmsion production line usually consists of an extmder (mono- or twin-screw) with a die at the end, a cooling and shaping device, a pulling device (a roUer), and a cutter. [Pg.387]

Oxidation of LLDPE starts at temperatures above 150°C. This reaction produces hydroxyl and carboxyl groups in polymer molecules as well as low molecular weight compounds such as water, aldehydes, ketones, and alcohols. Oxidation reactions can occur during LLDPE pelletization and processing to protect molten resins from oxygen attack during these operations, antioxidants (radical inhibitors) must be used. These antioxidants (qv) are added to LLDPE resins in concentrations of 0.1—0.5 wt %, and maybe naphthyl amines or phenylenediamines, substituted phenols, quinones, and alkyl phosphites (4), although inhibitors based on hindered phenols are preferred. [Pg.395]


See other pages where Pellets polymers is mentioned: [Pg.250]    [Pg.603]    [Pg.154]    [Pg.87]    [Pg.164]    [Pg.58]    [Pg.21]    [Pg.78]    [Pg.136]    [Pg.407]    [Pg.390]    [Pg.250]    [Pg.603]    [Pg.154]    [Pg.87]    [Pg.164]    [Pg.58]    [Pg.21]    [Pg.78]    [Pg.136]    [Pg.407]    [Pg.390]    [Pg.142]    [Pg.20]    [Pg.279]    [Pg.296]    [Pg.328]    [Pg.328]    [Pg.387]    [Pg.394]    [Pg.545]    [Pg.265]    [Pg.441]    [Pg.373]    [Pg.373]    [Pg.373]    [Pg.379]    [Pg.383]    [Pg.384]    [Pg.385]    [Pg.387]    [Pg.399]    [Pg.400]    [Pg.419]    [Pg.431]    [Pg.515]   
See also in sourсe #XX -- [ Pg.2012 ]




SEARCH



Mixing additives into polymers using pellets

Polymer, resin, pellet

© 2024 chempedia.info