Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionization, atmospheric pressure field

DGE a AC AMS APCI API AP-MALDI APPI ASAP BIRD c CAD CE CF CF-FAB Cl CID cw CZE Da DAPCI DART DC DE DESI DIOS DTIMS EC ECD El ELDI EM ESI ETD eV f FAB FAIMS FD FI FT FTICR two-dimensional gel electrophoresis atto, 10 18 alternating current accelerator mass spectrometry atmospheric pressure chemical ionization atmospheric pressure ionization atmospheric pressure matrix-assisted laser desorption/ionization atmospheric pressure photoionization atmospheric-pressure solids analysis probe blackbody infrared radiative dissociation centi, 10-2 collision-activated dissociation capillary electrophoresis continuous flow continuous flow fast atom bombardment chemical ionization collision-induced dissociation continuous wave capillary zone electrophoresis dalton desorption atmospheric pressure chemical ionization direct analysis in real time direct current delayed extraction desorption electrospray ionization desorption/ionization on silicon drift tube ion mobility spectrometry electrochromatography electron capture dissociation electron ionization electrospray-assisted laser desorption/ionization electron multiplier electrospray ionization electron transfer dissociation electron volt femto, 1CT15 fast atom bombardment field asymmetric waveform ion mobility spectrometry field desorption field ionization Fourier transform Fourier transform ion cyclotron resonance... [Pg.11]

Electrons from a spark are accelerated backward and forward rapidly in the oscillating electromagnetic field and collide with neutral atoms. At atmospheric pressure, the high collision frequency of electrons with atoms induces chaotic electron motion. The electrons gain rapidly in kinetic energy until they have sufficient energy to cause ionization of some gas atoms. [Pg.395]

The enforcement methods provided by the applicants give basic information about appropriate cleanup steps and specific determination procedures. Typically, direct use of this developmental work occurred when a GC multi-residue method was found appropriate. Owing to the recent developments in the field of MS/MS with atmospheric pressure ionization, an alternative approach for those compounds that can be analyzed by liquid chromatography (LC) will soon be possible. It is important that some fundamental considerations for such method(s) should be agreed at the outset. Considerations include the most suitable extraction solvents and cleanup steps and some standard HPLC conditions. [Pg.111]

As with GC, the combination of MS and MS/MS detection with LC adds an important confirmatory dimension to the analysis. Thermospray (TSP) and particle beam (PB) were two of the earlier interfaces for coupling LC and MS, but insufficient fragmentation resulted in a lack of structural information when using TSP, and insufficient sensitivity and an inability to ionize nonvolatile sample components hampered applications using PB. Today, atmospheric pressure ionization (API) dominates the LC/MS field for many environmental applications. The three major variants of API... [Pg.441]

In principle, mass spectrometry is not suitable to differentiate enantiomers. However, mass spectrometry is able to distinguish between diastereomers and has been applied to stereochemical problems in different areas of chemistry. In the field of chiral cluster chemistry, mass spectrometry, sometimes in combination with chiral chromatography, has been extensively applied to studies of proton- and metal-bound clusters, self-recognition processes, cyclodextrin and crown ethers inclusion complexes, carbohydrate complexes, and others. Several excellent reviews on this topic are nowadays available. A survey of the most relevant examples will be given in this section. Most of the studies was based on ion abundance analysis, often coupled with MIKE and CID ion fragmentation on MS " and FT-ICR mass spectrometric instruments, using Cl, MALDI, FAB, and ESI, and atmospheric pressure ionization (API) methods. [Pg.196]

With external ion sources it became feasible to interface any ionization method to the QIT mass analyzer. [171] However, commercial QITs are chiefly offered for two fields of applications i) GC-MS systems with El and Cl, because they are either inexpensive or capable of MS/MS to improve selectivity of the analysis (Chap. 12) and ii) instruments equipped with atmospheric pressure ionization (API) methods (Chap. 11) offering higher mass range, and some 5-fold unit resolution to resolve isotopic patterns of multiply charged ions (Fig. 4.47). [149,162,172,173]... [Pg.162]

Electrospray (ESI) is an atmospheric pressure ionization source in which the sample is ionized at an ambient pressure and then transferred into the MS. It was first developed by John Fenn in the late 1980s [1] and rapidly became one of the most widely used ionization techniques in mass spectrometry due to its high sensitivity and versatility. It is a soft ionization technique for analytes present in solution therefore, it can easily be coupled with separation methods such as LC and capillary electrophoresis (CE). The development of ESI has a wide field of applications, from small polar molecules to high molecular weight compounds such as protein and nucleotides. In 2002, the Nobel Prize was awarded to John Fenn following his studies on electrospray, for the development of soft desorption ionization methods for mass spectrometric analyses of biological macromolecules. ... [Pg.234]

In IC-MS systems, the core of the equipment is the interface. In fact, inside the interface evaporation of the liquid, ionization of neutral species to charged species and removal of a huge amount of mobile phase to keep the vacuum conditions required from the mass analyzer take place. Two main interfaces are used coupled to IC, namely electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). In the ESI mode, ions are produced by evaporation of charged droplets obtained through spraying and an electrical field, whilst in the APCI mode the spray created by a pneumatic nebulizer is directed towards a heated region (400°C-550°C) in which desolvation and vaporization take place. The eluent vapors are ionized by the corona effect (the partial discharge... [Pg.409]

Different types of instrumentation have been developed to introduce Hquid samples into the MS. Since Fenn has shown that molecular ions can be formed from liquids sprayed at atmospheric pressure in high electric fields, electrospray ionization (ESI) MS has gained increasing popularity for the analysis of biological samples [56]. In an electrospray inlet, the liquid sample is usually emitted as a spray from a capillary at a high potential compared to the mass analyzer into the electric field in front of the mass analyzer (Fig. 8). [Pg.53]

A striking feature of the ILs is their low vapor pressure. This, on the other hand, is a factor hampering their investigation by MS. For example, a technique like electron impact (El) MS, based on thermal evaporation of the sample prior to ionization of the vaporized analyte by collision with an electron beam, has only rarely been applied for the analysis of this class of compounds. In contrast, nonthermal ionization methods, like fast atom bombardment (FAB), secondary ion mass spectrometry (SIMS), atmospheric pressure chemical ionization (APCI), ESI, and MALDI suit better for this purpose. Measurement on the atomic level after burning the sample in a hot plasma (up to 8000°C), as realized in inductively coupled plasma (ICP) MS, has up to now only rarely been applied in the field of IE (characterization of gold particles dissolved in IE [1]). This method will potentially attract more interest in the future, especially, when the coupling of this method with chromatographic separations becomes a routine method. [Pg.373]

In ESI MS, a dissolved sample is sprayed through a capillary in an electric field which is situated in front of the vacuum inlet of the mass spectrometer [2]. Thus, in contrast to most other ionization techniques performed in high vacuum, the ionizahon process takes place at the atmospheric pressure. After leaving the capillary, the solvent forms a so-called Taylor-cone, which further forms a filament and finally, the spray of small droplets (Figure 14.2). These droplets carry charges on the surface this is frequently supported by the acidification of the solvent. The droplets shrink is caused by the evaporation of the solvent. This leads to an increase of the charge-per-surface ratio, finally... [Pg.374]

The choice of the ionization method depends on both the nature of the sample and the type of information required from the analysis (Table 23.2). A great variety of ionization methods exists that can be classified into six major categories gas-phase ionization, field desorption and ionization, particle bombardment, atmospheric pressure ionization, and the laser desorption. [Pg.706]

Mass spectrometry (MS) is now an integrated detector for liquid chromatography. This is due to the advent of atmospheric pressure ionization (API) interfaces. In an API interface, the column effluent is nebulized into an atmospheric pressure ion region. Nebulization is performed pneumatically in atmospheric pressure chemical ionization (APCI) by a strong electrical field in electrospray or by a combination of both in ion spray. Ions are produced from the evaporating droplets... [Pg.39]


See other pages where Ionization, atmospheric pressure field is mentioned: [Pg.382]    [Pg.216]    [Pg.29]    [Pg.270]    [Pg.468]    [Pg.828]    [Pg.1000]    [Pg.375]    [Pg.162]    [Pg.27]    [Pg.242]    [Pg.50]    [Pg.95]    [Pg.228]    [Pg.152]    [Pg.190]    [Pg.14]    [Pg.34]    [Pg.41]    [Pg.249]    [Pg.253]    [Pg.694]    [Pg.92]    [Pg.401]    [Pg.176]    [Pg.30]    [Pg.713]    [Pg.881]    [Pg.882]    [Pg.959]    [Pg.40]    [Pg.622]    [Pg.750]    [Pg.268]    [Pg.345]    [Pg.468]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Atmosphere, ionized

Atmospheric ionization

Atmospheric-pressure ionization

Field ionization

Pressure field

© 2024 chempedia.info