Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface evaporation

In interface evaporation, the bubbles of vapour formed on the heated surface move to the vapour-liquid interface by natural convection and exert very little agitation on the liquid. The results are given by ... [Pg.484]

Insulation see also lagging 554 Intelligent transmitters 240,241,242 Intensity of turbulence 701 Interface evaporation 484 Interfacial turbulence 618 Internal energy 27,44... [Pg.881]

There is an even distribution of solvent particles throughout the solution, even at the surface. There are fewer solvent particles at the gas-liquid interface. Evaporation takes place at this interface. Fewer solvent particles escape into the gas phase and thus the vapor pressure is lower. The higher the concentration of solute particles, the less solvent is at the interface and the lower the vapor pressure. [Pg.178]

In IC-MS systems, the core of the equipment is the interface. In fact, inside the interface evaporation of the liquid, ionization of neutral species to charged species and removal of a huge amount of mobile phase to keep the vacuum conditions required from the mass analyzer take place. Two main interfaces are used coupled to IC, namely electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). In the ESI mode, ions are produced by evaporation of charged droplets obtained through spraying and an electrical field, whilst in the APCI mode the spray created by a pneumatic nebulizer is directed towards a heated region (400°C-550°C) in which desolvation and vaporization take place. The eluent vapors are ionized by the corona effect (the partial discharge... [Pg.409]

The formation of polymersomes from water in- oil-in-water drops. Initially, a double emulsion consisting of single aqueous drops within drops of a volatile organic solvent ( oil ) is prepared using a microcapillary device. Amphiphilic diblock copolymers dissolved in the middle phase assemble into monolayers at the oil-water interfaces. Evaporation of the solvent then leads to the formation of polymer bilayers (polymersomes). [Pg.192]

Hansen (57) pointed out that evaporation of a solvent from a polymer solution faced two barriers when cast on an impermeable substrate resistance to solvent loss at the air-liquid interface and diffusion from within the film to the air interface. Evaporation of neat solvents as well as moderately dilute solutions is limited by resistance at the air interface, but as solvent concentration becomes low (5-10-15%), the rate-controlling step is diffusion through the film. Hansen pointed out that at the point when solvent loss changes to a diffusion-limited process, the concentration of solvent is sufficient to reduce the glass transition temperature, Tg, of the polymer to the film temperature. [Pg.679]

The use of IC-MS where the column outlet is connected directly to a mass spectrometer may impose additional requirements on the IC system. Since a vacuum must be maintained, more volatile ammonium salts rather than sodium or potassium salts are used in the eluent Inside the mass spectrometry interface evaporation of the IC liquid, ionization of neutral species to charged species, and removal... [Pg.34]

For mixture.s the picture is different. Unless the mixture is to be examined by MS/MS methods, usually it will be necessary to separate it into its individual components. This separation is most often done by gas or liquid chromatography. In the latter, small quantities of emerging mixture components dissolved in elution solvent would be laborious to deal with if each component had to be first isolated by evaporation of solvent before its introduction into the mass spectrometer. In such circumstances, the direct introduction, removal of solvent, and ionization provided by electrospray is a boon and puts LC/MS on a level with GC/MS for mixture analysis. Further, GC is normally concerned with volatile, relatively low-molecular-weight compounds and is of little or no use for the many polar, water soluble, high-molecular-mass substances such as the peptides, proteins, carbohydrates, nucleotides, and similar substances found in biological systems. LC/MS with an electrospray interface is frequently used in biochemical research and medical analysis. [Pg.59]

The efficiency of separation of solvent from solute varies with their nature and the rate of flow of liquid from the HPLC into the interface. Volatile solvents like hexane can be evaporated quickly and tend not to form large clusters, and therefore rates of flow of about 1 ml/min can be accepted from the HPLC apparatus. For less-volatile solvents like water, evaporation is slower, clusters are less easily broken down, and maximum flow rates are about 0.1-0.5 ml/min. Because separation of solvent from solute depends on relative volatilities and rates of diffusion, the greater the molecular mass difference between them, the better is the efficiency of separation. Generally, HPLC is used for substances that are nonvolatile or are thermally labile, as they would otherwise be analyzed by the practically simpler GC method the nonvolatile substances usually have molecular masses considerably larger than those of commonly used HPLC solvents, so separation is good. [Pg.79]

The nebulization and evaporation processes used for the particle-beam interface have closely similar parallels with atmospheric-pressure ionization (API), thermospray (TS), plasmaspray (PS), and electrospray (ES) combined inlet/ionization systems (see Chapters 8, 9, and 11). In all of these systems, a stream of liquid, usually but not necessarily from an HPLC column, is first nebulized... [Pg.79]

The particle-beam interface (LINC) works by separating unwanted solvent molecules from wanted solute molecules in a liquid stream that has been broken down into droplets. Differential evaporation of solvent leaves a beam of solute molecules that is directed into an ion source. [Pg.80]

Aerosols can be produced as a spray of droplets by various means. A good example of a nebulizer is the common household hair spray, which produces fine droplets of a solution of hair lacquer by using a gas to blow the lacquer solution through a fine nozzle so that it emerges as a spray of small droplets. In use, the droplets strike the hair and settle, and the solvent evaporates to leave behind the nonvolatile lacquer. For mass spectrometry, a spray of a solution of analyte can be produced similarly or by a wide variety of other methods, many of which are discussed here. Chapters 8 ( Electrospray Ionization ) and 11 ( Thermospray and Plasmaspray Interfaces ) also contain details of droplet evaporation and formation of ions that are relevant to the discussion in this chapter. Aerosols are also produced by laser ablation for more information on this topic, see Chapters 17 and 18. [Pg.138]

In the earliest interface, a continuous moving belt (loop) was used onto which the liquid emerging from the chromatographic column was placed as a succession of drops. As the belt moved along, the drops were heated at a low temperature to evaporate the solvent and leave behind any mixture components. Finally, the dried components were carried into the ion source, where they were heated strongly to volatilize them, after which they were ionized. [Pg.263]

Moving-belt (ribbon or wire) interface. An interface that continuously applies all, or a part of, the effluent from a liquid chromatograph to a belt (ribbon or wire) that passes through two or more orifices, with differential pumping into the mass spectrometer s vacuum system. Heat is applied to remove the solvent and to evaporate the solute into the ion source. [Pg.433]

Thermospray interface. Provides liquid chromatographic effluent continuously through a heated capillary vaporizer tube to the mass spectrometer. Solvent molecules evaporate away from the partially vaporized liquid, and analyte ions are transmitted to the mass spectrometer s ion optics. The ionization technique must be specified, e.g., preexisting ions, salt buffer, filament, or electrical discharge. [Pg.433]

Because of their hydrophobic nature, siUcones entering the aquatic environment should be significantly absorbed by sediment or migrate to the air—water interface. SiUcones have been measured in the aqueous surface microlayer at two estuarian locations and found to be comparable to levels measured in bulk (505). Volatile surface siloxanes become airborne by evaporation, and higher molecular weight species are dispersed as aerosols. [Pg.61]

Evaporation. Evaporative concentration can produce concentrations of 100,000 times or more in certain circumstances. Heat transfer surfaces, liquid and vapor interfaces, and regions where wetting and drying conditions occur are areas subject to evaporative concentration (see Case Histories 9.1, 9.4, and 9.6). [Pg.207]


See other pages where Interface evaporation is mentioned: [Pg.484]    [Pg.235]    [Pg.326]    [Pg.286]    [Pg.484]    [Pg.235]    [Pg.326]    [Pg.286]    [Pg.147]    [Pg.258]    [Pg.746]    [Pg.928]    [Pg.2772]    [Pg.3]    [Pg.432]    [Pg.432]    [Pg.99]    [Pg.146]    [Pg.178]    [Pg.201]    [Pg.546]    [Pg.403]    [Pg.99]    [Pg.336]    [Pg.366]    [Pg.529]    [Pg.251]    [Pg.253]    [Pg.452]    [Pg.90]    [Pg.352]    [Pg.357]    [Pg.106]    [Pg.1147]    [Pg.1418]    [Pg.1425]    [Pg.3]    [Pg.141]   
See also in sourсe #XX -- [ Pg.484 ]




SEARCH



Loop-type interfaces evaporation

© 2024 chempedia.info