Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inductively coupled plasma emission spectrometry ICP

The content of heavy metals in sediments was determined by sample digestion with 10 ml of the mixture of HCI04, HCI, HN03 and HF at 200°C, followed by Inductively Coupled Plasma Emission Spectrometry (ICP) (ACME, 2003). [Pg.212]

Analysis of major elements (except Si) and total phosphorus on bomb-digested samples was accomplished by inductively coupled plasma emission spectrometry (ICP, ARL model 34,000). Silicon was analyzed colorimetrically (14). Phosphorus in total digests was also determined colorimetrically by the method of Murphy and Riley (15), as modified by Erickson (16). To avoid interference from fluoride ion used in the digestion technique, sample volumes were restricted to <1.5 mL in the standard P analytical protocol. [Pg.290]

The elements Al, Mn, and Sr were determined by means of a Perkin-Elmer Optima 4300DV inductively coupled plasma emission spectrometry (ICP-AES) instrument (axial mode), equipped with an AS-90 Plus autosampler, a cross-flow nebulizer, and a Scott-type spray chamber in Ryton. The instrumental operating parameters are listed in Table 10.1. [Pg.337]

New methodologies for the laboratory analysis of cations and metals include the use of inductively coupled plasma emission spectrometry (ICP/ES) or the combinahon of ICP with mass spectrometry (ICP/MS) (e.g., Ivahnenko et al., 2001). The advantages of plasma techniques include (i) a wide and linear dynamic concen-trahon range (ii) multi-element capabihty and (iii) relatively free of matrix interferences. The use of ion chromatography (1C), gas chromatography (GC), and GC/MS has increased for the analysis of anions and dissolved organics (Barth, 1987 Kharaka and Thordsen, 1992 Ivahnenko et al., 2001). [Pg.2754]

Nickel and vanadium along with iron and sodium (from the brine) are the major metallic constituents of crude oil. These metals can be determined by atomic absorption spectrophotometric methods (ASTM D-5863, IP 285, IP 288, IP 465), wavelength-dispersive X-ray fluorescence spectrometry (IP 433), and inductively coupled plasma emission spectrometry (ICPES). Several other analytical methods are available for the routine determination of trace elements in crude oU, some of which allow direct aspiration of the samples (diluted in a solvent) instead of time-consuming sample preparation procedures such as wet ashing (acid decomposition) or flame or dry ashing (removal of volatile/combustible constituents) (ASTM D-5863). Among the techniques used for trace element determinations are conductivity (IP 265), flameless and flame atomic absorption (AA) spectropho-... [Pg.41]

Methods for quantitative analysis of Co indude flame and graphite-furnace atomic absorption spectrometry (AAS e.g., Welz and Sperling 1999), inductively coupled plasma emission spectrometry (ICP-AES e.g., Schramel 1994), neutron activation analysis (NAA e.g., Versieck etal. 1978), ion chromatography (e.g., Haerdi 1989), and electrochemical methods such as adsorption differential pulse voltammetry (ADPV e.g., Ostapczuk etal. 1983, Wang 1994). Older photometric methods are described in the literature (e.g.. Burger 1973). For a comparative study of the most commonly employed methods in the analysis of biological materials, see Miller-Ihli and Wolf (1986) and Angerer and Schaller... [Pg.827]

Interest in the roles of both essential and non-essential trace metals in human health and disease has undergone an enormous expansion in the last thirty years. This has come about partly due to major advances in our knowledge of inorganic biochemistry (Frausto da Silva and Williams. 1991), as well as the wider introduction into clinical laboratories of powerful analytical techniques such as graphite furnace atomic absorption spectrometry (Delves, 1987 Slavin, 1988). Developments in instrumentation and chemical matrix modification techniques have also brought about dramatic improvements in analytical performance (Delves. 1987 Baruthio et al.. 1988 Slavin, 1988 Christensen et al., 1988 Savory and Wills, 1991). Other analytical techniques, such as inductively-coupled plasma emission spectrometry (ICP) and ICP-mass spectrometry are also finding wide application in the clinical analysis of trace elements (Kimberly and Paschal, 1985 Delves and Campbell, 1988 Melton et al., 1990). Although the cost of such Instruments tends to restrict their use only to specialist centres, they have very important roles as reference techniques in the characterisation of reference materials (Delves and Campbell, 1988). [Pg.213]

At present, the most commonly used techniques for the determination of vanadium are graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma emission spectrometry (ICP-AES) and adsorptive inverse voltammetry (Fleischer et al., 1991). [Pg.533]

Inductively Coupled Plasma Emission Spectrometry (ICPES)>... [Pg.148]

Recent developments include inductively coupled plasma emission spectrometry (ICP), electrothermal atomic absorption spectrometry (ETAAS), and spectrofluorimetric methods. [Pg.446]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

Inductively coupled plasma (icp) emission, direct current plasma (dcp), and inductively coupled plasma mass spectrometry (icp/ms) have taken over as the methods of choice for the simultaneous detection of metallic impurities in hafnium and hafnium compounds (29,30). [Pg.443]

Method abbreviations D-AT-FAAS (derivative flame AAS with atom trapping), ETAAS (electrothermal AAS), GC (gas chromatography), HGAAS (hydride generation AAS), HR-ICP-MS (high resolution inductively coupled plasma mass spectrometry), ICP-AES (inductively coupled plasma atomic emission spectrometry), ICP-MS (inductively coupled plasma mass spectrometry), TXRF (total reflection X-ray fluorescence spectrometry), Q-ICP-MS (quadrapole inductively coupled plasma mass spectrometry)... [Pg.219]

Atomic techniques such as atomic absorption spectrometry (AA), inductively coupled plasma-optical emission spectrometry (ICP-OES), and inductively coupled plasma-mass spectrometry (ICP-MS), have been widely used in the pharmaceutical industry for metal analysis.190-192 A content uniformity analysis of a calcium salt API tablet formulation by ICP-AES exhibited significantly improved efficiency and fast analysis time (1 min per sample) compared to an HPLC method.193... [Pg.268]

Soil samples were wet sieved into (a) 2-4 mm, (b) 1-2 mm, (c) 0.5-1 mm, (d) 250-500 i m, (e) 125-250 am, (f) 63-125 j,m and (g) <63 j.m fractions. A ferruginous/magnetic fraction (m) was also prepared from the 2-4 mm fraction. Soil fractions were crushed, digested with HNO3/HCI/HF/HCIO4 and then analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) for Al, Ca, Cu, Fe, K, Mn, Na, P, S and Zn. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to determine Ag, As, Cd, Pb and Sb because of the lower detection limits by this method. The mineralogy of selected samples was determined by qualitative X-ray diffractometry. [Pg.88]

In 1C, the election-detection mode is the one based on conductivity measurements of solutions in which the ionic load of the eluent is low, either due to the use of eluents of low specific conductivity, or due to the chemical suppression of the eluent conductivity achieved by proper devices (see further). Nevertheless, there are applications in which this kind of detection is not applicable, e.g., for species with low specific conductivity or for species (metals) that can precipitate during the classical detection with suppression. Among the techniques that can be used as an alternative to conductometric detection, spectrophotometry, amperometry, and spectroscopy (atomic absorption, AA, atomic emission, AE) or spectrometry (inductively coupled plasma-mass spectrometry, ICP-MS, and MS) are those most widely used. Hence, the wide number of techniques available, together with the improvement of stationary phase technology, makes it possible to widen the spectrum of substances analyzable by 1C and to achieve extremely low detection limits. [Pg.406]

Internal standards are also used in trace metal analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) techniques. An internal standard solution is added to ICP-MS and ICP-AES samples to correct for matrix effects, and the response to the internal standard serves as a correction factor for all other analytes (see also chapter 2). [Pg.133]

Inorganic pigments and lakes (organic dyes bonded to an inorganic support) can be recognized by the ratio of elements in their composition, making elemental analysis an important tool in their identification. EDS may facilitate an initial qualitative analysis, but quantitative analysis and the detection of trace elements are needed to identify the inorganic colorant components. Due to sample size restrictions, the methods that can be employed are limited. The techniques of inductively-coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectroscopy (ICP-OES), and laser ablation ICP-MS are described in the literature (56). [Pg.26]

Since the mid-1960s, a variety of analytical chemistry techniques have been used to characterize obsidian sources and artifacts for provenance research (4, 32-36). The most common of these methods include optical emission spectroscopy (OES), atomic absorption spectroscopy (AAS), particle-induced X-ray emission spectroscopy (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS), laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray fluorescence spectroscopy (XRF), and neutron activation analysis (NAA). When selecting a method of analysis for obsidian, one must consider accuracy, precision, cost, promptness of results, existence of comparative data, and availability. Most of the above-mentioned techniques are capable of determining a number of elements, but some of the methods are more labor-intensive, more destructive, and less precise than others. The two methods with the longest and most successful histoty of success for obsidian provenance research are XRF and NAA. [Pg.527]

Iberian Peninsula, production centers, majolica pottery found on Canary Islands, 384, 385-398 Icelandic Norse-trading site, sulfur materials, simultaneous co-incident x-ray micro-fluorescence and microdiffraction analyses, 204-205 ICP-MS. See Inductively coupled plasma-mass spectrometry ICP-OES. See Inductively coupled plasma-optical emission spectroscopy. [Pg.562]

Ultraviolet-visible (UV-Vis) spectrophotometric detectors are used to monitor chromatographic separations. However, this type of detection offers very little specificity. Element specific detectors are much more useful and important. Atomic absorption spectrometry (AAS), inductively coupled plasma-atomic emission spectroscopy (ICPAES) and inductively coupled plasma-mass spectrometry (ICP-MS) are often used in current studies. The highest sensitivity is achieved by graphite furnace-AAS and ICP-MS. The former is used off-line while the latter is coupled to the chromatographic column and is used on-line . [Pg.403]

Cox and Mcleod66 passed their water samples through activated alumina microcolumns in the field, isolating and retaining both Cr(III) and Cr(VI) species. The microcolumns were then returned to the laboratory and inserted into a flow injection inductively coupled plasma-emission spectrometry (FI-ICP-ES) system for elution and quantification (the lowest results reported are around 40 nM). The pretreatment of the microcolumns and the FI-ICP-ES method was, however, complicated and time-consuming. Recently, Dogutan et al.67 and Latif et al.68 preconcentrated the Cr species on an exchange column and first eluted one species, and subsequently both of them. [Pg.127]


See other pages where Inductively coupled plasma emission spectrometry ICP is mentioned: [Pg.259]    [Pg.67]    [Pg.479]    [Pg.158]    [Pg.134]    [Pg.228]    [Pg.259]    [Pg.67]    [Pg.479]    [Pg.158]    [Pg.134]    [Pg.228]    [Pg.97]    [Pg.443]    [Pg.629]    [Pg.435]    [Pg.31]    [Pg.58]    [Pg.3]    [Pg.170]    [Pg.152]    [Pg.16]    [Pg.400]    [Pg.629]    [Pg.71]    [Pg.258]    [Pg.224]   


SEARCH



Atomic Emission Spectrometry with Inductively Coupled Plasma Excitation (ICP-AES)

Atomic-emission spectrometry with inductively coupled plasma (ICP-AES, see also Chapter

Coupled Plasma

Coupled Plasma (ICP) Emission Spectrometry

Coupled spectrometry

Coupling spectrometry

ICP inductively coupled plasma

Induction-coupled plasma

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

Inductively coupled plasma ICP) emission

Inductively coupled plasma emission

Inductively coupled plasma optical emission spectrometry (ICP

Inductively coupled plasma optical emission spectrometry (ICP-OES

Inductively coupled plasma-atomic emission spectrometry (ICP-AES

Plasma spectrometry)

Spectrometry emission

Spectrometry, inductively coupled plasma emission

© 2024 chempedia.info