Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons 1,3-butadiene

Butadiene is also used extensively for various polymerizations in manufacturing plastics. It combines with activated olefins in the Diels-Alder reaction to give hydroaromatic hydrocarbons. 1,3-Butadiene undergoes 1,4 cycli-zation with reactants containing sulfur, oxygen, and nitrogen [1]. [Pg.290]

In hydrocarbons, butadiene is the more reactive monomer with either polybutadienyllithium or polystyryllithium. Association of either active species has no effect in this comparison. The polystyryl anion seems to be more reactive with either monomer but we do not know if this effect is real or caused by a greater equilibrium concentration of free polystyryllithium. It may be significant that this compound exists mainly... [Pg.98]

Ion radicals of conjugated acyclic or aromatic hydrocarbons (butadiene or naphthalene) are typical examples of the species with a released unpaired electron. They are named ir-elec-tron ion radicals and have a spin distribution along the whole molecular contour. An important feature of such species is that all the structural components are coplanar or almost coplanar. In this case, spin density appears to be uniformly or symmetrically distributed over the molecular framework. Spin-density distribution has a decisive effect on the thermodynamic stability of ion radicals. In general, the stability of ion radicals increases with an enhancement in delocalization and steric shielding of the reaction centers bearing the maximal spin density. [Pg.172]

This type of energy-level pattern was evident in the MO energy-spectrum of the alternant hydrocarbon, butadiene, discussed in Chapter Two ( 2.7) and in the energy levels of the [n]-annulenes (n even) of Fig. 5-2. [Pg.53]

An illustration of this aspect of the Coulson-Rushbrooke Theorem is again provided by the alternant hydrocarbon, butadiene. The LCAO-coefficients of the two pairs of complementary orbitals in the molecule display this alternation of sign, as examination of equations (2-67) confirms (atoms 1 and 3 of Fig. 2-6 may be considered, for this purpose, as the starred atoms). [Pg.53]

An interesting corollary to part 2 of the Coulson-Rushbrooke Theorem (which does not require assumption c), equation (6-4)) concerns the nodes in the various LCAO-MO s discussed in our sample calculation on the alternant hydrocarbon, butadiene ( 2.10). As an example, we consider just the highest-bonding and lowest-anti-bonding orbitals of butadiene which, in 2.7, we called 4 2 and 4V These are, of course, complementary orbitals their nodal behaviour has been redrawn in Fig. 6-6 which is a simplified... [Pg.158]

EXPLOSION and FIRE CONCERNS not combustible NFPA rating (not rated) mercurous chloride is ineompatible with bromides, iodides, alkali chlorides, sulfates, sulfites, carbonates, hydroxides, ammonia, silver salts, eopper salts, hydrogen peroxide, iodine, and iodoform mercuric oxide reacts explosively with acetyl nitrate, chlorine and hydrocarbons, butadiene and ethanol and iodine (at 35°C), and hydrogen peroxide and traces of nitric acid forms heat or shock-sensitive explosive mixtures with metals and non-metals contact with acetylene, acetylene products, or ammonia gases may from solid products that are sensitive to shock and which can initiate fires of combustible materials decomposition emits highly toxic fumes of Hg use water spray, fog, or foam for firefighting purposes. [Pg.714]

Dimethyl formamide C4 hydrocarbons Butadiene mono-ethanol amine aromatics... [Pg.52]

All the studies mentioned determined the position of the label as CO2 after proper oxidation processes. Another possible method can be pyrolysis of alkanes.Pulses of various [ C] labelled hydrocarbons (butadiene, pentene, cyclopentadiene, alkanes, alkylbenzenes) were introduced into an inert gas stream, then passed through a heated reactor, and the pyrolysis products (methane, >Ci fragments and benzene) were analysed by a gas chromatograph equipped by a mass and a radioactivity detector. The temperature was kept between 873 and 1050 K, while the decomposition of aromatics required higher temperatures. With conversions between 5 and 90%, an accuracy of 5% could be reached. [Pg.53]

Natural rubber is a polymerized hydrocarbon whose conunercial synthesis proved to be difficult. Synthetic rubbers that are produced are similar, but not identical, to natural rubber. Natural rubber has the hydrocarbon butadiene as the simplest unit. Butadiene CH2=CH—CH=CH2 has two unsaturated linkages and is easily polymerized. It is produced commercially by cracking petroleum and also from ethyl alcohol. Natural rubber is a polymer of methyl butadiene (isoprene). [Pg.142]

Outside of carbon monoxide for which the toxicity is already well-known, five types of organic chemical compounds capable of being emitted by vehicles will be the focus of our particular attention these are benzene, 1-3 butadiene, formaldehyde, acetaldehyde and polynuclear aromatic hydrocarbons, PNA, taken as a whole. Among the latter, two, like benzo [a] pyrene, are viewed as carcinogens. Benzene is considered here not as a motor fuel component emitted by evaporation, but because of its presence in exhaust gas (see Figure 5.25). [Pg.260]

Chlorine Ammonia, acetylene, alcohols, alkanes, benzene, butadiene, carbon disulflde, dibutyl phthalate, ethers, fluorine, glycerol, hydrocarbons, hydrogen, sodium carbide, flnely divided metals, metal acetylides and carbides, nitrogen compounds, nonmetals, nonmetal hydrides, phosphorus compounds, polychlorobi-phenyl, silicones, steel, sulfldes, synthetic rubber, turpentine... [Pg.1207]

Mercury(II) oxide Chlorine, hydrazine hydrate, hydrogen peroxide, hypophosphorous acid, magnesium, phosphorus, sulfur, butadiene, hydrocarbons, methanethiol... [Pg.1209]

The principal direct appHcation of furfural is as a selective solvent. It is used for separating saturated from unsaturated compounds in petroleum refining, for the extractive distillation of butadiene and other hydrocarbons in the manufacture of synthetic mbber and for the production of... [Pg.79]

In the United States butadiene was prepared initially from ethanol and later by cracking four-carbon hydrocarbon streams (see Butadiene). In Germany butadiene was prepared from acetylene via the following steps acetylene — acetaldehyde — 3-hydroxybutyraldehyde — 1,3-butanediol — ... [Pg.101]

Methanol use would also reduce pubHc exposure to toxic hydrocarbons associated with gasoline and diesel fuel, including ben2ene, 1,3-butadiene, diesel particulates, and polynuclear aromatic hydrocarbons. Although pubHc formaldehyde exposures might increase from methanol use in garages and tunnels, methanol use is expected to reduce overall pubHc exposure to toxic air contaminants. [Pg.434]

Butadiene Separation. Solvent extraction is used in the separation of butadiene (qv) [106-99-0] from other C-4 hydrocarbons in the manufacture of synthetic mbber. The butadiene is produced by catalytic dehydrogenation of butylene and the Hquid product is then extracted using an aqueous cuprammonium acetate solution with which the butadiene reacts to form a complex. Butadiene is then recovered by stripping from the extract. Distillation is a competing process. [Pg.79]

It is convenient to divide the petrochemical industry into two general sectors (/) olefins and (2) aromatics and their respective derivatives. Olefins ate straight- or branched-chain unsaturated hydrocarbons, the most important being ethylene (qv), [74-85-1] propjiene (qv) [115-07-17, and butadiene (qv) [106-99-0J. Aromatics are cycHc unsaturated hydrocarbons, the most important being benzene (qv) [71-43-2] toluene (qv) [108-88-3] p- s.y en.e [106-42-3] and (9-xylene [95-47-5] (see Xylenes and ethylbenzene) There are two other large-volume petrochemicals that do not fall easily into either of these two categories ammonia (qv) [7664-41-7] and methanol (qv) [67-56-1]. These two products ate derived primarily from methane [74-82-8] (natural gas) (see Hydrocarbons, c -c ). [Pg.171]

ElexibiHty allows the operator to pick and choose the most attractive feedstock available at a given point in time. The steam-cracking process produces not only ethylene, but other products as weU, such as propylene, butadiene, butylenes (a mixture of monounsaturated C-4 hydrocarbons), aromatics, etc. With ethane feedstock, only minimal quantities of other products ate produced. As the feedstocks become heavier (ie, as measured by higher molecular weights and boiling points), increasing quantities of other products are produced. The values of these other coproduced products affect the economic attractiveness and hence the choice of feedstock. [Pg.171]

Another use is in various extraction and absorption processes for the purification of acetylene or butadiene and for separation of aHphatic hydrocarbons, which have limited solubiHty in DMF, from aromatic hydrocarbons. DMF has also been used to recover CO2 from flue gases. Because of the high solubiHty of SO2 iu DMF, this method can even be used for exhaust streams from processes using high sulfur fuels. The CO2 is not contaminated with sulfur-containing impurities, which are recovered from the DMF in a separate step (29). [Pg.514]

G-5—G-9 Aromatic Modified Aliphatic Petroleum Resins. Compatibihty with base polymers is an essential aspect of hydrocarbon resins in whatever appHcation they are used. As an example, piperylene—2-methyl-2-butene based resins are substantially inadequate in enhancing the tack of 1,3-butadiene—styrene based random and block copolymers in pressure sensitive adhesive appHcations. The copolymerization of a-methylstyrene with piperylenes effectively enhances the tack properties of styrene—butadiene copolymers and styrene—isoprene copolymers in adhesive appHcations (40,41). Introduction of aromaticity into hydrocarbon resins serves to increase the solubiHty parameter of resins, resulting in improved compatibiHty with base polymers. However, the nature of the aromatic monomer also serves as a handle for molecular weight and softening point control. [Pg.354]

Aliphatic Chemicals. The primary aliphatic hydrocarbons used in chemical manufacture are ethylene (qv), propjiene (qv), butadiene (qv), acetylene, and / -paraffins (see Hydrocarbons, acetylene). In order to be useflil as an intermediate, a hydrocarbon must have some reactivity. In practice, this means that those paraffins lighter than hexane have Httle use as intermediates. Table 5 gives 1991 production and sales from petroleum and natural gas. Information on uses of the C —C saturated hydrocarbons are available in the Hterature (see Hydrocarbons, C —C ). [Pg.366]

Elastomers. Elastomers are polymers or copolymers of hydrocarbons (see Elastomers, synthetic Rubber, natural). Natural mbber is essentially polyisoprene, whereas the most common synthetic mbber is a styrene—butadiene copolymer. Moreover, nearly all synthetic mbber is reinforced with carbon black, itself produced by partial oxidation of heavy hydrocarbons. Table 10 gives U.S. elastomer production for 1991. The two most important elastomers, styrene—butadiene mbber (qv) and polybutadiene mbber, are used primarily in automobile tires. [Pg.369]

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

Isoprene [78-79-5] (2-methyl-1,3-butadiene) is a colorless, volatile Hquid that is soluble in most hydrocarbons but is practically insoluble in water. Isoprene forms binary azeotropes with water, methanol, methylamine, acetonitrile, methyl formate, bromoethane, ethyl alcohol, methyl sulfide, acetone, propylene oxide, ethyl formate, isopropyl nitrate, methyla1 (dimethoxymethane), ethyl ether, and / -pentane. Ternary azeotropes form with water—acetone, water—acetonitrile, and methyl formate—ethyl bromide (8). Typical properties of isoprene are Hsted in Table 1. [Pg.462]

Other Organolithium Compounds. Organoddithium compounds have utiHty in anionic polymerization of butadiene and styrene. The lithium chain ends can then be converted to useflil functional groups, eg, carboxyl, hydroxyl, etc (139). Lewis bases are requHed for solubdity in hydrocarbon solvents. [Pg.229]

Other high molecular weight hydrocarbon polymers are not biodegradable, but oligomers of <7j -l,4-isoprene (83), butadiene (84), and styrene (85), are degradable. And there has been further confirmation of biodegradation of oligomeric ethylene (86). [Pg.479]

BP. These nitrile alloy membranes are compounded from PVC, flexibilized by the addition of butadiene—acrylonitrile copolymers, PVC, and other proprietary ingredients. Typically reinforced with polyester scrim, NBP membranes are 1 mm thick and have a width of 1.5 m. They ate ptedominandy used in mechanically fastened roofing systems. NBP membranes exhibit excellent teat and puncture resistance as well as good weatherabihty, and remain flexible at low temperatures. They ate resistant to most chemicals but ate sensitive to aromatic hydrocarbons. The sheet is usually offered in light colors. The physical characteristics of NBP membranes have been described (15). [Pg.214]


See other pages where Hydrocarbons 1,3-butadiene is mentioned: [Pg.53]    [Pg.1005]    [Pg.266]    [Pg.39]    [Pg.48]    [Pg.231]    [Pg.232]    [Pg.233]    [Pg.52]    [Pg.445]    [Pg.70]    [Pg.377]    [Pg.257]    [Pg.138]    [Pg.219]    [Pg.191]    [Pg.240]    [Pg.190]    [Pg.390]    [Pg.239]    [Pg.467]    [Pg.68]    [Pg.430]    [Pg.22]    [Pg.223]    [Pg.249]   


SEARCH



Butadiene with hydrocarbons

Hydrocarbon molecules butadiene

Styrene-butadiene rubbers hydrocarbons found

© 2024 chempedia.info