Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hazardous waste burning incinerators

Hazardous waste burning incinerators, cement kilns, and LWAKs do not follow a tiered approach to regulate the release of toxic metals into the atmosphere. The MACT rule finalized numerical emission standards for three categories of metals mercury, low-volatile metals (arsenic, beryllium, and chromium), and semivolatile metals (lead and cadmium). Units must meet emission standards for the amount of metals emitted. For example, a new cement kiln must meet an emission limit of 120pg/m3 of mercury, 54pg/m3 of low-volatile metals, and 180 pg/m3 of semivolatile metals. [Pg.463]

In addition, these units are also subject to the general TSDF facility standards under RCRA. Flazardous waste incinerators and hazardous waste burning cement kilns and LWAKs are also subject to the CAA MACT emission standards. A complete overview of the MACT standards and additional information about hazardous waste combustion can be found in Ref. 13. [Pg.464]

Resource Conservation and Recovery Act (RCRA) regulations governing incinerators can be found at 40 CFR Part 264/265, Subpart O-Incinerators.4 RCRA regulations governing BIFs can be found at 40 CFR Part 266, Subpart H-Hazardous Waste Burned in BIFs.5... [Pg.955]

In an industrial atmosphere all types of contamination by sulfur in the form of sulfur dioxide or hydrogen sulfide are important. The burning of fossil fuels generates a large amount of sulfur dioxide, which is converted to sulfuric and sulfurous acids in the presence of moisture. Combustion of these fossil fuels and hazardous waste products should produce only carbon dioxide, water vapor, and inert gas as combustion products. This is seldom the case. Depending on the impurities contained in the fossil fuel, the chemical composition of the hazardous waste materials incinerated, and the combustion conditions encountered, a multitude of other compounds may be formed. [Pg.3]

Regulations require that the incinerator furnace be at normal operating conditions, including furnace temperature, before hazardous wastes are injected. This requires auxiUary fuel burners for furnace preheating. In addition, the burners provide heat when the wastes burned are of low heating value. Auxihary burners are sized for conditions where Hquid wastes are injected without the addition of high heating value wastes. [Pg.54]

HAZARDOUS WASTE An Unofficial class of industrial wastes which have to be disposed of with particular care. In the UK the closest definition is for special wastes . Certain toxic organic wastes, such as PCBs, have to be burned in high-temperature incinerators. [Pg.14]

Burners Used oil burners are handlers who burn used oil for energy recovery in boilers, industrial furnaces, or hazardous waste incinerators. [Pg.443]

CMBST Combustion Combustion destroys organic wastes or makes them less hazardous through burning in boilers, industrial furnaces, or incinerators... [Pg.453]

Another critical part of the incinerator design is the pollution control system.11 Pollution control systems directly influence the levels and kinds of pollutants that are released and that can potentially reach the public. Most modern hazardous waste incinerators are designed with extensive air pollution removal systems. For example, a common pollution control system might include a system that cools or quenches gases produced by burning waste, followed by a system that reduces acid gas emissions, and ultimately followed by a particulate removal system such as fabric filters (bag-houses), electrostatic precipitators, venturi scrubbers, and others.10... [Pg.957]

Some considerations relevant to public health concerns about modern and effective incineration systems have been described. However, local health officials and citizens of communities with hazardous waste incinerators have expressed to ATSDR their concern that they may not be able to judge a good operation, or that, once the initial trial burns and inspections are completed, the system may not be operated in the same manner as during the testing phase. Citizens have also expressed concern that burning rates will be exceeded or monitoring systems will be overridden. [Pg.959]

Incinerators in existence on May 19, 1980, were allowed to continue burning hazardous waste if the units complied with the Part 265, Subpart O,4 interim status standards. On November 8,1989,... [Pg.960]

All devices classified as incinerators that burn hazardous waste must follow the Subpart O standards, with the following exception. The Regional Administrator must exempt an owner/operator applying for a permit from all of the incinerator standards in Subpart O, except waste analysis and closure, if the hazardous waste fed into an incinerator is considered as low-risk waste. The criteria for defining a waste as low risk are as follows4 ... [Pg.961]

HC1 is an acidic gas that forms when chlorinated organic compounds in hazardous wastes are burned. An incinerator burning hazardous waste cannot emit more than 1.8 kg of HCl/h or more than 1% of the total HC1 in the stack gas prior to entering any pollution control equipment, whichever is larger. [Pg.962]

The purpose of a hazardous waste incinerator permit is to allow a new hazardous incinerator to establish conditions including, but not limited to, allowable waste feeds and operating conditions that will ensure adequate protection of human health and the environment. The incinerator permit covers four phases of operation pretrial bum, trial bum, posttrial burn, and final operating conditions. [Pg.963]

The posttrial bum period is the time for U.S. EPA to evaluate all of the data that were recorded during the incinerator s trial burn. To allow the operation of a hazardous waste incinerator following the completion of the trial bum, U.S. EPA establishes permit conditions sufficient to ensure that the unit will meet the incinerator performance standards. This posttrial burn period is limited to the minimum time required to complete the sampling, analysis, data computation of trial bum results, and the submission of these results to U.S. EPA. [Pg.964]

If an incinerator burns a listed hazardous waste, the ash is also considered a listed waste. The derived-from rule states that any solid waste generated from the treatment, storage, or disposal of a listed hazardous waste, including any sludge, spill residue, ash, emission control dust, or leachate, remains a hazardous waste unless and until it is delisted. The owner/operator must also determine whether the ash exhibits any of the characteristics of a hazardous waste. [Pg.965]

The combustors affected by this rule detoxify or recover energy from hazardous waste and include incinerators, cement kilns, lightweight aggregate kilns, boilers and process heaters, and hydrochloric acid production furnaces. U.S. EPA estimates that 145 facilities operate 265 devices that burn hazardous waste. These technology-based standards reduce emissions of hazardous pollutants, including lead, mercury, arsenic, dioxin and furans, and HC1 and chlorine gas. In addition, emissions of PM are also reduced. [Pg.979]

U.S. EPA s recommendations regarding stack emission tests, which may be performed at hazardous waste combustion facilities for the purpose of supporting MACT standards and multipathway, site-specific risk assessments, where such a risk assessment has been determined to be necessary by the permit authority, can be found in the U.S. EPA document on Risk Burn Guidance for Hazardous Waste Combustion Facilities.32 The applicability of the new standards has been demonstrated in the management of hazardous waste incinerators, whose performance was shown to clearly surpass the regulatory requirements in all tested areas.33... [Pg.979]

For either plant type, incineration, or fuel type, these factors must be empirically determined and controlled. Because dioxins as effluents are concerned, it is possible to reduce I-TE values from about 50 ng/m to about 1 ng/m. Additional secondary measures (filter techniques) are therefore necessary for obtaining the lower limit value of 0.1 ng/m. Secondary measures are special filter techniques for pollutants formed in nongreen processes, also called end-of-pipe technology. The main part of technical incineration plants consists of filter devices, mostly coke as adsorbent is used, which must be decontaminated later by itself by burning in hazardous-waste incinerators. The inhibition technology, discussed later, is related on principles of primary (green) measures for a clean incineration method. [Pg.179]

Recent efforts have been concerned with the acceptable operation of hazardous waste incinerators. Currently, the performance standards for incinerators burning hazardous waste address three areas ... [Pg.186]

Ananth, K. P. Gorman, P. Hansen, E. Oberacker, D. A. "Trial Burn Verification Program for Hazardous Waste Incineration," Proc. 8th Annu. Res. Symp. Incineration and Treatment of Hazardous Waste, EPA-600/9-83-003, 1983. [Pg.194]

In 1993, the vendor estimated procurement and construction costs of a full-scale (1000 kg/hr) PHP system for the treatment of mixed and hazardous wastes would be approximately 2 million. The largest development costs are associated with U. S. Environmental Protection Agency (EPA) quality trial burn testing and radioactive demonstration testing. Permitting costs are expected to be similar to that required for an incinerator system (D12887U, pp. 5-6). [Pg.954]

CDDs have been measured in all environmental media including ambient air, surface water, groundwater, soil, and sediment. While the manufacture and use of chlorinated compounds, such as chlorophenols and chlorinated phenoxy herbicides, were important sources of CDDs to the environment in the past, the restricted manufacture of many of these compounds has substantially reduced their current contribution to environmental releases. It is now believed that incineration/combustion processes are the most important sources of CDDs to the environment (Zook and Rappe 1994). Important incineration/combustion sources include medical waste, municipal solid waste, hazardous waste, and sewage sludge incineration industrial coal, oil, and wood burning secondary metal smelting, cement kilns, diesel fuel combustion, and residential oil and wood burning (Clement et al. 1985 Thoma 1988 Zook and Rappe 1994). [Pg.407]

Surrogate trial burns demonstrate that incinerators at chemical agent disposal facilities can operate safely. The requirement to perform surrogate trial burns at these facilities is consistent with the initial start-up procedures followed at commercial hazardous waste incineration facilities. [Pg.21]


See other pages where Hazardous waste burning incinerators is mentioned: [Pg.462]    [Pg.956]    [Pg.462]    [Pg.956]    [Pg.196]    [Pg.113]    [Pg.101]    [Pg.160]    [Pg.2]    [Pg.903]    [Pg.956]    [Pg.963]    [Pg.244]    [Pg.255]    [Pg.294]    [Pg.98]    [Pg.840]    [Pg.187]    [Pg.188]    [Pg.101]    [Pg.217]    [Pg.172]    [Pg.25]    [Pg.40]   
See also in sourсe #XX -- [ Pg.462 ]




SEARCH



Hazardous waste

Hazardous waste hazards

Hazardous waste incinerators

Hazardous wastes incineration

Incinerated

Incinerated Incineration

Incineration

Incinerator incinerators

Incinerators

Waste incineration

Waste incinerators

© 2024 chempedia.info