Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Full scale

In view of the sensitivity of the manometric system, which has a full scale range of about 2 mm of mercury, the final pressure must be reached in stages, repeating the operations described a number of times. [Pg.57]

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

The cooled, dried chlorine gas contains - 2% HCl and up to 10% O2, both of which are removed by Hquefaction. A full scale 600-t/day plant was built by Du Pont ia 1975. This iastaHatioa at Corpus Christi, Texas operates at 1.4 MPa (13.8 atm) and 120—180°C and uses tantalum-plated equipment and pipes. Oxidation of HCl Chloride by JSHtricHcid. The nitrosyl chloride [2696-92-6] route to chlorine is based on the strongly oxidi2iag properties of nitric acid... [Pg.504]

Rocket propellants must not contain sizable cracks, pores, or cavities. They are inspected using x-rays and ultrasonics, and firings are conducted in strand burners, intermpted burners, and in reduced or full-scale rocket motors (see also Nondestructive evaluation) (16—20). [Pg.34]

One problem associated with discussing flame retardants is the lack of a clear, uniform definition of flammabiHty. Hence, no clear, uniform definition of decreased flammabiHty exists. The latest American Society for Testing and Materials (ASTM) compilation of fire tests Hsts over one hundred methods for assessing the flammabiHty of materials (2). These range in severity from small-scale measures of the ignitabiHty of a material to actual testing in a full-scale fire. Several of the most common tests used on plastics are summarized in Table 1. [Pg.465]

Eor evaluation of flocculants for pressure belt filters, both laboratory-scale filters and filter simulators are available (52,53) in many cases from the manufacturers of the full-scale equipment. The former can be mn either batchwise or continuously the simulators require less substrate and are mn batchwise. The observed parameters include cake moisture, free drainage, release of the cake from the filter cloth, filter blinding, and retention of the flocculated material during appHcation of pressure. [Pg.36]

Accuracies of the flow meters discussed herein are specified as either a percentage of the full-scale flow or as a percentage of the actual flow rate. It may be convenient in some appHcations to compare the potential inaccuracies in actual volumetric flow rates. For example, in reading two Hters per minute (LPM) on a flow meter rated for five LPM, the maximum error for a 1% of full-scale accuracy specification would be 0.01 x 5 = 0.05 LPM. If another flow meter of similar range, but having 1% of actual flow rate specification, were used, the maximum error would be 0.01 x 2 = 0.02 LPM. To minimize errors, meters having full-scale accuracy specifications are normally not used at the lower end of their range. Whenever possible, performance parameters should be assessed for the expected installation conditions, not the reference conditions that are the basis of nominal product performance specifications. [Pg.56]

Variable-Area Flow Meters. In variable-head flow meters, the pressure differential varies with flow rate across a constant restriction. In variable-area meters, the differential is maintained constant and the restriction area allowed to change in proportion to the flow rate. A variable-area meter is thus essentially a form of variable orifice. In its most common form, a variable-area meter consists of a tapered tube mounted vertically and containing a float that is free to move in the tube. When flow is introduced into the small diameter bottom end, the float rises to a point of dynamic equiHbrium at which the pressure differential across the float balances the weight of the float less its buoyancy. The shape and weight of the float, the relative diameters of tube and float, and the variation of the tube diameter with elevation all determine the performance characteristics of the meter for a specific set of fluid conditions. A ball float in a conical constant-taper glass tube is the most common design it is widely used in the measurement of low flow rates at essentially constant viscosity. The flow rate is normally deterrnined visually by float position relative to an etched scale on the side of the tube. Such a meter is simple and inexpensive but, with care in manufacture and caHbration, can provide rea dings accurate to within several percent of full-scale flow for either Hquid or gas. [Pg.61]

A number of meter designs have been developed based on this principle. Some are shown in Eigure 17. Certain advantages ate claimed for each, but all share a number of characteristics. Perhaps the most important property is a full-scale deflection on the order of 0.001 mm. The sensors for these meters are extremely sensitive, stable, and capable of being temperature compensated. [Pg.65]

In general, the desorptive behavior of contaminated soils and soHds is so variable that the requited thermal treatment conditions are difficult to specify without experimental measurements. Experiments are most easily performed in bench- and pilot-scale faciUties. Full-scale behavior can then be predicted using mathematical models of heat transfer, mass transfer, and chemical kinetics. [Pg.48]

Scale-up is the process of developing a plant design from experimental data obtained from a unit many orders of magnitude smaller. This activity is considered successful if the commercial plant produces the product at plaimed rates, for plaimed costs, and of desired quaUty. This step from pilot plant to full-scale operation is perhaps the most precarious of all the phases of developing a new process because the highest expenses ate committed at the stages when the greatest risks occur. [Pg.40]

The intrinsic rejection and maximum obtainable water flux of different membranes can be easily evaluated in a stirred batch system. A typical batch unit (42) is shown in Figure 5. A continuous system is needed for full-scale system design and to determine the effects of hydrodynamic variables and fouling in different module configurations. A typical laboratory/pilot-scale continuous unit using computer control and on-line data acquisition is shown in Figure 6. [Pg.149]

A process development known as NOXSO (DuPont) (165,166) uses sodium to purify power plant combustion flue gas for removal of nitrogen oxide, NO, and sulfur, SO compounds. This technology reHes on sodium metal generated in situ via thermal reduction of sodium compound-coated media contained within a flue-gas purification device, and subsequent flue-gas component reactions with sodium. The process also includes downstream separation and regeneration of spent media for recoating and circulation back to the gas purification device. A full-scale commercial demonstration project was under constmction in 1995. [Pg.169]

The 1990 Amendments to the U.S. Clean Air Act require a 50% reduction of sulfur dioxide emissions by the year 2000. Electric power stations are beheved to be the source of 70% of all sulfur dioxide emissions (see Power generation). As of the mid-1990s, no utiUties were recovering commercial quantities of elemental sulfur ia the United States. Two projects had been aimounced Tampa Electric Company s plan to recover 75,000—90,000 metric tons of sulfuric acid (25,000—30,000 metric tons sulfur equivalent) aimuaHy at its power plant ia Polk County, Elorida, and a full-scale sulfur recovery system to be iastaHed at PSl Energy s Wabash River generating station ia Terre Haute, Indiana. Completed ia 1995, the Terre Haute plant should recover about 14,000 t/yr of elemental sulfur. [Pg.123]

Production, Shipment, and Specifications. Carbonyl sulfide is available ia 97% min purity ia cylinders up to 31.8 kg contained weight. It is shipped as a flammable gas. There appears to be no full-scale commercial production of carbonyl sulfide ia the United States. [Pg.130]

New product introductions are generally heavily supported by the technical service function. Many customers using chemical feedstocks to produce multicomponent products for the consumer market require extensive on-line evaluations of new raw materials prior to their acceptance for use. An example of this would be the use of a new engineering polymer for the fabrication of exterior automobile stmctural panels. Full-scale fabrication of the part foUowed by a detailed study of parameters, such as impact strength, colorant behavior, paint receptivity, exterior photodurabiHty, mar resistance, and others, would be required prior to making a raw materials change of this nature. [Pg.378]

One goal of catalyst designers is to constmct bench-scale reactors that allow determination of performance data truly indicative of performance in a full-scale commercial reactor. This has been accompHshed in a number of areas, but in general, larger pilot-scale reactors are preferred because they can be more fully instmmented and can provide better engineering data for ultimate scale-up. In reactor selection thought must be given to parameters such as space velocity, linear velocity, and the number of catalyst bodies per reactor diameter in order to properly model heat- and mass-transfer effects. [Pg.197]

The modem history of the military use of toxic chemical agents (1,3—5) dates from the first full-scale (chlorine) gas attack on April 22, 1915, near Ypres, Belgium in World War I. There were a few reports of the limited use of toxic chemicals since that time. The Italians employed mustard, a bUster agent, during the Ethiopian war in 1935 and 1936 the Japanese used toxic chemicals in a number of small-scale engagements in the early years of their war with China and Iraq purportedly employed both mustard and nerve gases in the 1980s. [Pg.397]

Effects of Impurities nd Solvent. The presence of impurities usually decreases the growth rates of crystalline materials, and problems associated with the production of crystals smaller than desired are commonly attributed to contamination of feed solutions. Strict protocols should be followed in operating units upstream from a crystallizer to minimize the possibiUty of such occurrences. Equally important is monitoring the composition of recycle streams so as to detect possible accumulation of impurities. Furthermore, crystalliza tion kinetics used in scaleup should be obtained from experiments on solutions as similar as possible to those expected in the full-scale process. [Pg.345]

Scale- Up of Electrochemical Reactors. The intermediate scale of the pilot plant is frequendy used in the scale-up of an electrochemical reactor or process to full scale. Dimensional analysis (qv) has been used in chemical engineering scale-up to simplify and generalize a multivariant system, and may be appHed to electrochemical systems, but has shown limitations. It is best used in conjunction with mathematical models. Scale-up often involves seeking a few critical parameters. Eor electrochemical cells, these parameters are generally current distribution and cell resistance. The characteristics of electrolytic process scale-up have been described (63—65). [Pg.90]


See other pages where Full scale is mentioned: [Pg.769]    [Pg.1333]    [Pg.134]    [Pg.166]    [Pg.167]    [Pg.72]    [Pg.89]    [Pg.36]    [Pg.42]    [Pg.61]    [Pg.67]    [Pg.67]    [Pg.19]    [Pg.27]    [Pg.287]    [Pg.502]    [Pg.48]    [Pg.336]    [Pg.211]    [Pg.317]    [Pg.432]    [Pg.484]    [Pg.49]    [Pg.322]    [Pg.24]    [Pg.156]    [Pg.378]    [Pg.156]    [Pg.260]    [Pg.264]    [Pg.536]   
See also in sourсe #XX -- [ Pg.155 , Pg.156 , Pg.157 , Pg.158 , Pg.159 , Pg.160 , Pg.161 , Pg.162 , Pg.163 , Pg.164 , Pg.165 , Pg.166 , Pg.167 , Pg.205 , Pg.217 , Pg.246 , Pg.248 , Pg.304 , Pg.305 , Pg.326 , Pg.330 , Pg.442 ]




SEARCH



Building full-scale

Cold flow model, full-scale

Containment full scale example

FULL SCALE PROCESS EXAMPLE

FULL-SCALE PLANT DESIGN

Full Scale Operational Design

Full Set of Scaling Relationships

Full scale deflection

Full scale pressure

Full scale production

Full-Scale Emergency Simulations

Full-Scale Example

Full-Scale Filter Performance Evaluation

Full-Scale Mechanistic Gray-Box Modeling

Full-scale Engineered Barriers

Full-scale Engineered Barriers Experiment in Crystalline

Full-scale Engineered Barriers Host Rock

Full-scale Engineered Barriers simulation

Full-scale Operation with Ruthenium Catalyst

Full-scale active brace

Full-scale applications

Full-scale cellular beam experiment

Full-scale cellular column experiments

Full-scale fire

Full-scale fire modeling

Full-scale fire modeling combustion

Full-scale fire modeling heat transfer

Full-scale fire tests

Full-scale friction

Full-scale operation, chemical reactivity

Full-scale operation, chemical reactivity hazard management

Full-scale process concept

Full-scale process considerations

Full-scale screen channel LADs

Full-scale structures

Full-scale test production (chapter

Full-scale tests

Full-scale wastewater treatment plant systems

Instrumentation amplifier full scale

Materials in Pilot-or Full-Scale Applications

Parallel full-scale reactors

Reactors full-scale

Real-World Full-Scale Applications

Tests on pultruded GFRP sub- and full-scale structures

© 2024 chempedia.info