Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flame atomic absorption, detection limits

Table 7.7. Atomic absorption detection limits and sensitivities with a conventional flame atomizer... Table 7.7. Atomic absorption detection limits and sensitivities with a conventional flame atomizer...
Furnace atomizers have conversion efficiencies much higher than do flame atomizers absolute detection limits are typically 100 to 1000 times improved over flame-aspiration methods. Our discussion will center on atomizers heated by electrical resistance. Although these are not generally useful for emission measurements, they are well suited for atomic-absorption and atomic-fluorescence measurements [3]. [Pg.276]

A comparison of the detection limits for the rare earth elements in flame atomic emission and absorption spectrometry (table 37D.3 in section 2.2.5) allows certain conclusions to be made. The fuel-rich oxyacetylene and nitrous oxide-acetylene flames are very effective in producing free atoms of these elements and are the flames of choice for both atomic emission and absorption analysis. The emission detection limits are equal to or better than those obtained by absorption techniques, and thus flame atomic emission methods are generally superior. Future improvements in hollow cathode discharge tubes (or development of other primary sources) may lower the atomic absorption detection limits and thereby make the two techniques more complementary. However, Kinnunen and Lindsjo (1967) have emphasized that locating the proper rare earth ab-... [Pg.413]

The section on Spectroscopy has been retained but with some revisions and expansion. The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-19, and phosphoms-31. [Pg.1284]

Fang et al. [661] have described a flow injection system with online ion exchange preconcentration on dual columns for the determination of trace amounts of heavy metal at pg/1 and sub-pg/1 levels by flame atomic absorption spectrometry (Fig. 5.17). The degree of preconcentration ranges from a factor of 50 to 105 for different elements, at a sampling frequency of 60 samples per hour. The detection limits for copper, zinc, lead, and cadmium are 0.07, 0.03, 0.5, and 0.05 pg/1, respectively. Relative standard deviations are 1.2-3.2% at pg/1 levels. The behaviour of the various chelating exchangers used was studied with respect to their preconcentration characteristics, with special emphasis on interferences encountered in the analysis of seawater. [Pg.238]

Tony et al. [951] have discussed an online preconcentration flame atomic absorption spectrometry method for determining iron, cobalt, nickel, magnesium, and zinc in seawater. A sampling rate of 30 samples per hour was achieved and detection limits were 4.0,1.0,1.0,0.5, and 0.5 xg/l, for iron, cobalt, nickel, magnesium, and zinc, respectively. [Pg.239]

Limit of detection The method you choose must be able to detect the analyte at a concentration relevant to the problem. If the Co level of interest to the Bulging Drums was between 1 and 10 parts per trillion, would flame atomic absorption spectroscopy be the best method to use As you consider methods and published detection limits (LOD), remember that the LOD definition is the analyte concentration producing a signal that is three times the noise level of the blank, i.e., a S/N of 3. For real-world analysis, you will need to be at a level well above the LOD. Keep in mind that the LOD for the overall analytical method is often very different than the LOD for the instrumental analysis. [Pg.816]

Different methods have different detection limits. For example, the flame atomic absorption spectrophotometry (AAS) method for aluminum has a detection limit of 30 parts per million, while the inductively coupled plasma... [Pg.38]

Lei et al. reported a method for the indirect determination of trace amounts of procaine in human serum by atomic absorption spectrophotometry [54], The sample was mixed with HCIO4, heated at 85°C for 30 minutes, diluted to a known volume with water, and centrifuged. 1 mL of the supernatant solution was buffered with 0.1 M sodium acetate-acetic acid to pH 3.86, and mixed with 0.2 M Zn(SCN)j reagent to a final concentration of 0.1 M. After dilution to 50 mL with water, the solution was shaken for 1 minute with 10 mL of 1,2-dichloroethane, whereupon the zinc extracted into the organic phase was determined by air-acetylene flame atomic absorption spectrometry for the indirect determination of procaine. The detection limit was found to be 0.1 pg/g, with a recovery of 89-98% and a coefficient of variation (n = 10) equal to 3.2%. [Pg.433]

Table 2.2 Limits of detection for flame atomic absorption spectrometry... Table 2.2 Limits of detection for flame atomic absorption spectrometry...
Flame atomic absorption spectrometry (FAAS) can be used to detect most elements present at levels greater than about 100 pg 1 . For more sensitive determinations graphite furnace atomic absorption spectrometry (GFAAS) is the technique of choice. In addition, if the volume of the fraction is limited GFAAS is ideally suited for the determination because only a few microfitres (5-20 pi) of sample... [Pg.163]

In EMEP, ICP-MS is dehned as the reference technique. The exception is mercury, where cold vapor atomic fluorescence spectroscopy (CV-AFS) is chosen. Other techniques may be used, if they are shown to yield results of a quality equivalent to that obtainable with the recommended method. These other methods include graphite furnace atomic absorption spectroscopy (GF-AAS), flame-atomic absorption spectroscopy (F-AAS), and CV-AFS. The choice of technique depends on the detection limits desired. ICP-MS has the lowest detection limit for most elements and is therefore suitable for remote areas. The techniques described in this manual are presented with minimum detection limits. Table 17.2 lists the detection limits for the different methods. [Pg.405]

Belal et al [40] reported on the use of flame atomic absorption spectroscopy (FAAS), coupled with ion-exchange, to determine EDTA in dosage forms. EDTA is complexed with either Ca(II) or Mg(II) at pH 10, and the excess cations retained on an ion-exchange resin. At the same time, the Ca(II) or Mg(III) EDTA complexes are eluted and determined by AAS. Calibration curves were found to be linear over the range of 4-160 and 2-32 pg/mL EDTA when using Ca(II) or Mg(II), respectively. The method could be applied to eye drops and ampoules containing pharmaceuticals. Another combined AAS flow injection system was proposed for the determination of EDTA based on its reaction with Cu(II). The calibration curve was linear over the range of 5-50 pg/mL, with a limit of detection of 0.1 pg/mL [41]. [Pg.86]

One of the attractions of flame atomic absorption is that relative standard deviations are often better then 1% in ideal situations and only marginally poorer than this when lower levels are being analysed. By definition the precision of measurement is 50% relative standard deviation at the detection limit, because it is at this point that the signal to noise ratio equals 2. [Pg.49]

Flameless atomic absorption using an electrothermal atomiser is essentially a non-routine technique requiring specialist expertise. It is slower than flame analysis only 10—20 samples can be analysed in an hour furthermore, the precision is poorer (1—10%) than that for conventional flame atomic absorption (1%). The main advantage of the method, however, is its superior sensitivity for any metal the sensitivity is 100—1000 times greater when measured by the flameless as opposed to the flame technique. For this reason flameless atomic absorption is employed in the analysis of water samples where the flame techniques have insufficient sensitivity. An example of this is with the elements barium, beryllium, chromium, cobalt, copper, manganese, nickel and vanadium, all of which are required for public health reasons to be measured in raw and potable waters (section I.B). Because these elements are generally at the lOOjugl-1 level and less in water, their concentration is below the detection limit when determined by flame atomic absorption as a result, an electrothermal atomisation (ETA) technique is often employed for their determination. [Pg.86]

Table 2.1 shows some detection limits which can be achieved and demonstrates that for the alkaline elements extremely low detection limits can be achieved in flame atomic absorption. Obtaining such low levels obviously requires the use of acids of extremely high purity to dissolve or dilute the samples, and great care in the preparation of the samples. [Pg.52]

Table 2.1 Detection limits for aqueous solutions in flame atomic absorption. Table 2.1 Detection limits for aqueous solutions in flame atomic absorption.
Table 1 shows the detection limits of atomic absorption spectrophotometry for various metals. In general, flame atomic absorption spectrophotometry is quantitative in the lower parts-per-million levels and is readily automated for routine, high-volume samples. The other three techniques are used primarily for trace analysis and are quantitative to the lower parts-per-million levels for many elements. [Pg.3368]

Olsen et al. (48, 20) have described an interesting method for the determination of lead in polluted seawater using FIA and flame atomic absorption spectroscopy. The system incorporates a Chelex-100 column for on-line preconcentration of the sample. The preconcentration and elution step improves the detection limit for lead by a factor of four (50 nM). Further increases in sensitivity are easily possible. The combination of this preconcentration step with a more sensitive detector, such as anodic stripping voltammetry, may make possible the determination of trace metals in seawater on a routine basis. [Pg.20]

Background Caused by Filters. Since all of the particles were collected on membrane filters it was necessary to determine the blank metal concentrations in the filter. This enabled an estimation of how many particles must be collected in order that the levels of the metals were significantly greater than the blank filter. For this study, both neutron and flame atomic absorption spectrometric analyses were used and the results are shown in Table I. The analyses by neutron activation were made on the filter directly whereas those by atomic absorption spectrometry were obtained by extracting the filter with nitric acid (16M Ultrex). There are apparent differences between the two sizes of membrane filters which are probably related to the fact that these filter sets were obtained at different times. Also, while the metal blanks within a particular batch of filters vary by negligible amoimts, the variations between batches are considerable. These determinations are near the detection limits for both techniques, and therefore there are considerable uncertainties associated with the results. However, these blanks did indicate the minimum level of metals which must be collected if the analyses are to be significant. [Pg.47]

Atomic Absorption Spectrometry. Flame atomic absorption spectrometry was adopted as the second method of analysis and since low volumes of air were sampled, only a limited number of elements were detected in the collected particles (calcium, copper, iron, magnesium, and zinc). Aluminum, cadmium, chromium, cobalt, lead, manganese, and nickel were not detected in any of the samples. This resulted in a limited... [Pg.47]

Comparison of Detection Limits for Various Elements by Flame Atomic Absorption and Flame Atomic Emission Methods ... [Pg.851]

Column 2 of Table 28-4 shows detection limits for a number of common elements determined by flame atomic absorption and compares them with those obtained with other atomic spectroscopic methods. Under usual conditions, the relative error of flame absorption analysis is on the order of 1 % to 2%. With special precautions, this figure can be lowered to a few tenths of 1%. Note that flame AA detection limits are generally better than flame AE detection limits except for the easily excited alkali metals. [Pg.864]

For the homogeneity studies, the extractants (0.05 mol L EDTA, 0.43 mol L" acetic acid and 0.005 mol L DTPA) were prepared as laid out in the certification reports [15, 17], The trace element contents (Cd, Cr, Cu, Ni, Pb and Zn) in the extracts were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) for the CRMs 483/484, flame atomic absorption spectrometry (FAAS) or electrothermal atomic absorption spectrometry with Zeeman background correction (ZETAAS) for the CRM 600. In the case of the CRM 483, little analytical difficulty was experienced as illustrated by the good agreement obtained between the within-bottle and between-bottle CVs for the CRM 484, lower extractable contents, closer to the detection limits and consequent poorer analytical precision was observed in particular for Cr (EDTA extractable contents), Cd and Pb (acetic acid extractable contents). No particular difficulties were experienced for the CRM 600. On the basis of these results, the materials were considered to be homogeneous at a level of 5 g for EDTA- and acetic acid-extractable contents and 10 g for DTPA-extractable contents (as specified in the extraction protocols). [Pg.430]

Atomization of the sample is usually facilitated by the same flame aspiration technique that is used in flame emission spectrometry, and thus most flame atomic absorption spectrometers also have the capability to perform emission analysis. The previous discussion of flame chemistry with regard to emission spectroscopy applies to absorption spectroscopy as well. Flames present problems for the analysis of several elements due to the formation of refractory oxides within the flame, which lead to nonlinearity and low limits of detection. Such problems occur in the determination of calcium, aluminum, vanadium, molybdenum, and others. A high-temperature acetylene/nitrous oxide flame is useful in atomizing these elements. A few elements, such as phosphorous, boron, uranium, and zirconium, are quite refractory even at high temperatures and are best determined by nonflame techniques (Table 2). [Pg.430]

The first requirement can be easily fulfilled by the preconcentration of the analyte before the analysis. Preconcentration has been applied to sample preparation for flame atomic absorption (25) and, more recently, for ICP (79,80) spectroscopy. However, preconcentration is not completely satisfactory, because of the increased analysis time (which may be critical in clinical analysis) and the increased chance of contamination or sample loss. Most important, however, a larger initial sample size is necessary. The apparent solution is a more sensitive technique. Table 2 lists concentrations of various metals in whole blood or serum (81,82) in comparison to limits of detection for the various atomic spectroscopy techniques. In many cases, especially for the toxic heavy metals, only flameless atomic absorption using a graphite furnace can provide the necessary sensitivity and accommodate a sample of only a few microliters (Table 1). The determination of therapeutic gold in urine and serum (83,84), chromium in serum (85), skin (86) and liver (87), copper in semen (88), arsenic in urine (89), manganese in animal tissues (90), and lead in blood (91) are but a few examples in analyses which have utilized the flameless atomic absorption technique. [Pg.436]

UV—Vis = spectrophotometry FAAS = flame atomic absorption spectrometry FP = flame photometry Analytical range or detection limit given in original units. [Pg.253]


See other pages where Flame atomic absorption, detection limits is mentioned: [Pg.524]    [Pg.134]    [Pg.232]    [Pg.634]    [Pg.443]    [Pg.402]    [Pg.27]    [Pg.362]    [Pg.363]    [Pg.569]    [Pg.52]    [Pg.410]    [Pg.420]    [Pg.134]    [Pg.166]    [Pg.422]    [Pg.14]    [Pg.232]    [Pg.185]   


SEARCH



Atomic absorption detection limits

Atomic detection limits

Atomic limit

Detectable limit

Detection atomic

Detection limits

Detection limits, limitations

Detection-limiting

Flame atomic absorption

Flame atomization Flames

Flame atomizers

Flame detection limits

Flames atoms

© 2024 chempedia.info