Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene naphtha

Dias, M. L. and Silva, A. P. F Transesterification reactions in triphenyl phosphite additivated-poly(ethylene terephthalate)/poly(ethylene naphtha-late) blends, Polym. Eng. Sci., 40, 1777 (2000). [Pg.538]

This article is an overview of the novel technology of self-reinforced LCPs with polyesters, poly(ethylene terephthalate) (PET) and poly(ethylene naphtha-late) (PEN) [10-13, 21, 23], LCP/polyester blends in a polyester matrix form in situ fibrils which improve the mechanical properties. LCPs have an inherently low melt viscosity, and provide LCP/polyester blends that effectively lower the melt viscosity during melt spinning [24], and fast injection-molding cycles. The miscibility between the LCP and polyesters can be controlled by the degree of transesterification [25] in the reactive extrusion step, and fibril formation in LCP-reinforced polyester fibers has been studied. [Pg.666]

The cracking of naphtha produces most of the world s ethylene. Naphtha is the crude oil fraction boiling Irom about 32°C to 192°C. The composition of naphtha made from crude oil comprises four basic components linear paraffins, branched paraffins, naphthenes (cyclo-paraffins) and aromatics. The relative amount of these in naphtha is dependent on the source crude oil and varies widely. [Pg.43]

UOP LLC,A Honeywell Co. Ethylene Naphtha -cracker feed MaxEne process increases ethylene yield from naphtha crackers by raising the concentration of normal paraffins (n-paraffins) in the naphtha-cracker feed. The process is the newest application of UOP s Sorbex technology. It uses adsorptive separation to separate C -C, naphtha into a n-paraffins rich stream and a stream depleted of n-paraffins NA NA... [Pg.292]

Distribution. Refinery products and a number of petrochemicals (e.g., ethylene, naphtha, ethylene oxide, benzene) are transported to other plants via pipeline, barge, rail, or truck for further processing. [Pg.20]

Costs (million Euros) Costs per ton ethylene natural gas Costs per ton ethylene green gas Costs per ton ethylene naphtha ... [Pg.503]

Properly speaking, steam cracking is not a refining process. A key petrochemical process, it has the purpose of producing ethylene, propylene, butadiene, butenes and aromatics (BTX) mainly from light fractions of crude oil (LPG, naphthas), but also from heavy fractions hydrotreated or not (paraffinic vacuum distillates, residue from hydrocracking HOC). [Pg.382]

In a single stage, without liquid recycle, the conversion can be optimized between 60 and 90%. The very paraffinic residue is used to make lubricant oil bases of high viscosity index in the range of 150 N to 350 N the residue can also be used as feedstock to steam cracking plants providing ethylene and propylene yields equal to those from paraffinic naphthas, or as additional feedstock to catalytic cracking units. [Pg.391]

Olefins are produced primarily by thermal cracking of a hydrocarbon feedstock which takes place at low residence time in the presence of steam in the tubes of a furnace. In the United States, natural gas Hquids derived from natural gas processing, primarily ethane [74-84-0] and propane [74-98-6] have been the dominant feedstock for olefins plants, accounting for about 50 to 70% of ethylene production. Most of the remainder has been based on cracking naphtha or gas oil hydrocarbon streams which are derived from cmde oil. Naphtha is a hydrocarbon fraction boiling between 40 and 170°C, whereas the gas oil fraction bods between about 310 and 490°C. These feedstocks, which have been used primarily by producers with refinery affiliations, account for most of the remainder of olefins production. In addition a substantial amount of propylene and a small amount of ethylene ate recovered from waste gases produced in petroleum refineries. [Pg.171]

Hoechst WHP Process. The Hoechst WLP process uses an electric arc-heated hydrogen plasma at 3500—4000 K it was developed to industrial scale by Farbwerke Hoechst AG (8). Naphtha, or other Hquid hydrocarbon, is injected axially into the hot plasma and 60% of the feedstock is converted to acetylene, ethylene, hydrogen, soot, and other by-products in a residence time of 2—3 milliseconds Additional ethylene may be produced by a secondary injection of naphtha (Table 7, Case A), or by means of radial injection of the naphtha feed (Case B). The oil quenching also removes soot. [Pg.386]

With this type of burner, a wide variety of raw materials, ranging from propane to naphtha, and heavier hydrocarbons containing 10—15 carbon atoms, can be used. In addition, the pecuhar characteristics of the different raw materials that can be used enable the simultaneous production of acetylene and ethylene (and heavier olefins) ia proportioas which can be varied within wide limits without requiring basic modifications of the burner. [Pg.388]

The unit Kureha operated at Nakoso to process 120,000 metric tons per year of naphtha produces a mix of acetylene and ethylene at a 1 1 ratio. Kureha s development work was directed toward producing ethylene from cmde oil. Their work showed that at extreme operating conditions, 2000°C and short residence time, appreciable acetylene production was possible. In the process, cmde oil or naphtha is sprayed with superheated steam into the specially designed reactor. The steam is superheated to 2000°C in refractory lined, pebble bed regenerative-type heaters. A pair of the heaters are used with countercurrent flows of combustion gas and steam to alternately heat the refractory and produce the superheated steam. In addition to the acetylene and ethylene products, the process produces a variety of by-products including pitch, tars, and oils rich in naphthalene. One of the important attributes of this type of reactor is its abiUty to produce variable quantities of ethylene as a coproduct by dropping the reaction temperature (20—22). [Pg.390]

The quantity of coproduct acetylene produced is sensitive to both the feedstock and the severity of the cracking process. Naphtha, for example, is cracked at the most severe conditions and thus produces appreciable acetylene up to 2.5 wt % of the ethylene content. On the other hand, gas oil must be processed at lower temperature to limit coking and thus produces less acetylene. Two industry trends are resulting in increased acetylene output (/) the ethylene plant capacity has more than doubled, and (2) furnace operating conditions of higher temperature and shorter residence times have increased the cracking severity. [Pg.391]

Table 14 Hsts the acetylene-producing plants in Western Europe as of 1991. Of the 782,000 t of aimual capacity, 48% is produced from natural gas, 46% from calcium carbide, 4% from naphtha, and 2% as ethylene coproduct. Table 14 Hsts the acetylene-producing plants in Western Europe as of 1991. Of the 782,000 t of aimual capacity, 48% is produced from natural gas, 46% from calcium carbide, 4% from naphtha, and 2% as ethylene coproduct.
The principal route for production of isoprene monomer outside of the CIS is recovery from ethylene by-product C streams. This route is most viable where ethylene is produced from naphtha or gas oil and where several ethylene plants are located in relatively close proximity to the isoprene plant. Although the yield of isoprene per mass of ethylene is quite low, there is enough ethylene produced to provide a large portion of demand. Because of the presence of / -pentane in these streams which a2eotropes with isoprene, extractive distillation must be used to recover pure isoprene. Acetonitrile is the most common solvent, but dimethylformamide is also used commercially. [Pg.468]

Solvent Treatment. Solvent processes can be divided into two main categories, solvent extraction and solvent dewaxing. The solvent used in the extraction processes include propane and cresyHc acid, 2,2 -dichlorodiethyl ether, phenol (qv), furfural, sulfur dioxide, benzene, and nitrobenzene. In the dewaxing process (28), the principal solvents are benzene, methyl ethyl ketone, methyl isobutyl ketone, propane, petroleum naphtha, ethylene dichloride, methylene chloride, sulfur dioxide, and iV-methylpyrroHdinone. [Pg.208]

Significant products from a typical steam cracker are ethylene, propylene, butadiene, and pyrolysis gasoline. Typical wt % yields for butylenes from a steam cracker for different feedstocks are ethane, 0.3 propane, 1.2 50% ethane/50% propane mixture, 0.8 butane, 2.8 hill-range naphtha, 7.3 light gas oil, 4.3. A typical steam cracking plant cracks a mixture of feedstocks that results in butylenes yields of about 1% to 4%. These yields can be increased by almost 50% if cracking severity is lowered to maximize propylene production instead of ethylene. [Pg.366]

The principal sources of feedstocks in the United States are the decant oils from petroleum refining operations. These are clarified heavy distillates from the catalytic cracking of gas oils. About 95% of U.S. feedstock use is decant oil. Another source of feedstock is ethylene process tars obtained as the heavy byproducts from the production of ethylene by steam cracking of alkanes, naphthas, and gas oils. There is a wide use of these feedstocks in European production. European and Asian operations also use significant quantities of coal tars, creosote oils, and anthracene oils, the distillates from the high temperature coking of coal. European feedstock sources are 50% decant oils and 50% ethylene tars and creosote oils. [Pg.544]

A few industrial catalysts have simple compositions, but the typical catalyst is a complex composite made up of several components, illustrated schematically in Figure 9 by a catalyst for ethylene oxidation. Often it consists largely of a porous support or carrier, with the catalyticaHy active components dispersed on the support surface. For example, petroleum refining catalysts used for reforming of naphtha have about 1 wt% Pt and Re on the surface of a transition alumina such as y-Al203 that has a surface area of several hundred square meters per gram. The expensive metal is dispersed as minute particles or clusters so that a large fraction of the atoms are exposed at the surface and accessible to reactants (see Catalysts, supported). [Pg.170]

Cyclohexanoae is miscible with methanol, ethanol, acetone, benzene, / -hexane, nitrobenzene, diethyl ether, naphtha, xylene, ethylene glycol, isoamyl acetate, diethylamine, and most organic solvents. This ketone dissolves cellulose nitrate, acetate, and ethers, vinyl resias, raw mbber, waxes, fats, shellac, basic dyes, oils, latex, bitumea, kaure, elemi, and many other organic compounds. [Pg.425]

Table 6 shows the effect of varying coil oudet pressure and steam-to-oil ratio for a typical naphtha feed on the product distribution. Although in these tables, the severity is defined as maximum, in a reaUstic sense they are not maximum. It is theoretically possible that one can further increase the severity and thus increase the ethylene yield. Based on experience, however, increasing the severity above these practical values produces significantly more fuel oil and methane with a severe reduction in propylene yield. The mn length of the heater is also significantly reduced. Therefore, this is an arbitrary maximum, and if economic conditions justify, one can operate the commercial coils above the so-called maximum severity. However, after a certain severity level, the ethylene yield drops further, and it is not advisable to operate near or beyond this point because of extremely severe coking. [Pg.437]


See other pages where Ethylene naphtha is mentioned: [Pg.2073]    [Pg.551]    [Pg.172]    [Pg.5]    [Pg.1830]    [Pg.551]    [Pg.585]    [Pg.551]    [Pg.551]    [Pg.2095]    [Pg.477]    [Pg.2081]    [Pg.2077]    [Pg.280]    [Pg.10]    [Pg.2073]    [Pg.551]    [Pg.172]    [Pg.5]    [Pg.1830]    [Pg.551]    [Pg.585]    [Pg.551]    [Pg.551]    [Pg.2095]    [Pg.477]    [Pg.2081]    [Pg.2077]    [Pg.280]    [Pg.10]    [Pg.232]    [Pg.167]    [Pg.171]    [Pg.173]    [Pg.174]    [Pg.175]    [Pg.389]    [Pg.389]    [Pg.408]    [Pg.373]    [Pg.214]    [Pg.485]    [Pg.42]    [Pg.370]   


SEARCH



Ethylene selectivity, naphtha pyrolysis

Ethylene/Propylene Yield naphtha

Naphtha

© 2024 chempedia.info