Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene severity

In our refining and petrochemical industries we need to be more aware of catalytic olefin routes to propylene and ethylene. Several related capacity and cost increases impact this emerging route ... [Pg.126]

Apart from polymerization processes with gaseous monomers above their critical points-for example, the synthesis of low-density poly(ethylene) - several SCFs have been tested as inert reaction media, such as ethane, propane, butane, and C02. Among these, scC02 is by far the most widely investigated, because it links positive fluid effects on the polymers with environmental advantages this makes scC02 the main candidate as an alternative to traditional solvents used in polymer syntheses. [Pg.20]

The evidence for 4 was based upon measurements of the uptake of ethylene (after degassing and readmission of ethylene several times to the system.) Hay found that the system absorbed more ethylene (25 times) than the solubility of ethylene in hexane would predict. However, one cannot help but wonder whether or not the solubility of ethylene in n-BuLi-hexane or n-BuLi-hexane-TMEDA might be different from that of ethylene in hexane alone. [Pg.63]

In refs. 2-1.128) jjj terms of the CNDO method, the coordination of ethylene on a monometallic AC with various alkyl groups has been analyzed CHj (complex A, reaction (24)), trans-C- Hj (complex C, reaction (25, 26)), and cw-CjHj (complex F, reaction (27)- 29)). In all cases, the initial and final states of the AC in the process of ethylene coordination are optimized by the minimum of the overall energy. This process includes the construction of potential surfaces in two independent coordinates, according to the change of the position of alkyl and ethylene. Several possibilities of ethylene entering into the coordination sphere of Ti(III) ion have been calculated. [Pg.90]

In another experiment, Cr/silica-titania was activated at 650 °C and then used to polymerize ethylene several times at temperatures varying from 100 to 110 °C—alone, and in the presence of 0.16 and 0.30 ppm of CO in the reactor. Figure 76 is a plot of the response to shear stress (F1LMI/ MI) of these polymers against the MI [407], This plot illustrates a common... [Pg.283]

Although the Diels-Alder reaction of acetylene received less theoretical attention than that of ethylene, several observations have recently been made about the reactivities of acetylene (Fig. 1-3). Coxon et al. reported an ab-initio computational study on the Diels-Alder reaction... [Pg.7]

Figure Bl.22.10. Carbon K-edge near-edge x-ray absorption (NEXAFS) speetra as a fiinotion of photon ineidenee angle from a submonolayer of vinyl moieties adsorbed on Ni(lOO) (prepared by dosing 0.2 1 of ethylene on that surfaee at 180 K). Several eleetronie transitions are identified in these speetra, to both the pi (284 and 286 eV) and the sigma (>292 eV) imoeeupied levels of the moleeule. The relative variations in the intensities of those peaks with ineidenee angle ean be easily eonverted into adsorption geometry data the vinyl plane was found in this ease to be at a tilt angle of about 65° from the surfaee [71], Similar geometrieal detenninations using NEXAFS have been earried out for a number of simple adsorbate systems over the past few deeades. Figure Bl.22.10. Carbon K-edge near-edge x-ray absorption (NEXAFS) speetra as a fiinotion of photon ineidenee angle from a submonolayer of vinyl moieties adsorbed on Ni(lOO) (prepared by dosing 0.2 1 of ethylene on that surfaee at 180 K). Several eleetronie transitions are identified in these speetra, to both the pi (284 and 286 eV) and the sigma (>292 eV) imoeeupied levels of the moleeule. The relative variations in the intensities of those peaks with ineidenee angle ean be easily eonverted into adsorption geometry data the vinyl plane was found in this ease to be at a tilt angle of about 65° from the surfaee [71], Similar geometrieal detenninations using NEXAFS have been earried out for a number of simple adsorbate systems over the past few deeades.
Several studies have demonstrated the successful incoriDoration of [60]fullerene into polymeric stmctures by following two general concepts (i) in-chain addition, so called pearl necklace type polymers or (ii) on-chain addition pendant polymers. Pendant copolymers emerge predominantly from the controlled mono- and multiple functionalization of the fullerene core with different amine-, azide-, ethylene propylene terjDolymer, polystyrene, poly(oxyethylene) and poly(oxypropylene) precursors [63,64,65,66,62 and 66]. On the other hand, (-CggPd-) polymers of the pearl necklace type were fonned via the periodic linkage of [60]fullerene and Pd monomer units after their initial reaction with thep-xy y ene diradical [69,70 and 71]. [Pg.2416]

Bromine is used in the manufacture of many important organic compounds including 1,2-dibromoethane (ethylene dibromide), added to petrol to prevent lead deposition which occurs by decomposition of the anti-knock —lead tetraethyl bromomethane (methyl bromide), a fumigating agent, and several compounds used to reduce flammability of polyester plastics and epoxide resins. Silver(I) bromide is used extensively in the photographic industry... [Pg.347]

The method has severe limitations for systems where gradients on near-atomic scale are important (as in the protein folding process or in bilayer membranes that contain only two molecules in a separated phase), but is extremely powerful for (co)polymer mixtures and solutions [147, 148, 149]. As an example Fig. 6 gives a snapshot in the process of self-organisation of a polypropylene oxide-ethylene oxide copolymer PL64 in aqueous solution on its way from a completely homogeneous initial distribution to a hexagonal structure. [Pg.27]

The liquid becomes progressively darker in colour, and then effervesces gently as ethylene is evolved. Allow the gas to escape from the delivery-tube in T for several minutes in order to sweep out the air in F and B. Now fill a test-tube with water, close it with the finger, and invert the tube in the water in T over the delivery-tube so that a sample of the gas collects in the tube. Close the tube again with the finger, and then light the gas at a Bunsen burner at a safe distance from the apparatus. If the tube contains pure ethylene, the latter burns with a clear pale blue (almost invisible) flame if the ethylene still contains air, the mixture in the test-tube ignites with a sharp report. Allow the... [Pg.84]

We have just seen how to construct a TINKER input hie for ethylene. We shall now construct several new models and study their geometries. [Pg.110]

The number of ethylenic linkages In a given compound can be established with accuracy by quantitative titration with perbenzoic acid. A solution of the substance ajid excess of perbenzoic acid in chloroform is allowed to stand for several hours at a low temperature and the amount of unreacted perbenzoic acid in solution is determined a blank experiment is run simultaneously. [Pg.809]

Prepare a saturated solution of sodium sulphide, preferably from the fused technical sodium polysulphide, and saturate it with sulphur the sulphur content should approximate to that of sodium tetrasulphide. To 50 ml. of the saturated sodium tetrasulphide solution contained in a 500 ml. round-bottomed flask provided with a reflux condenser, add 12 -5 ml. of ethylene dichloride, followed by 1 g. of magnesium oxide to act as catalyst. Heat the mixture until the ethylene dichloride commences to reflux and remove the flame. An exothermic reaction sets in and small particles of Thiokol are formed at the interface between the tetrasulphide solution and the ethylene chloride these float to the surface, agglomerate, and then sink to the bottom of the flask. Decant the hquid, and wash the sohd several times with water. Remove the Thiokol with forceps or tongs and test its rubber-like properties (stretching, etc.). [Pg.1024]

Extensive studies on the Wacker process have been carried out in industrial laboratories. Also, many papers on mechanistic and kinetic studies have been published[17-22]. Several interesting observations have been made in the oxidation of ethylene. Most important, it has been established that no incorporation of deuterium takes place by the reaction carried out in D2O, indicating that the hydride shift takes place and vinyl alcohol is not an intermediate[l,17]. The reaction is explained by oxypailadation of ethylene, / -elimination to give the vinyl alcohol 6, which complexes to H-PdCl, reinsertion of the coordinated vinyl alcohol with opposite regiochemistry to give 7, and aldehyde formation by the elimination of Pd—H. [Pg.22]

For some systems a single determinant (SCFcalculation) is insufficient to describe the electronic wave function. For example, square cyclobutadiene and twisted ethylene require at least two configurations to describe their ground states. To allow several configurations to be used, a multi-electron configuration interaction technique has been implemented in HyperChem. [Pg.235]

Methane has also been used in aerobic bioreactors that are part of a pump-and-treat operation, and toluene and phenol have also been used as co-substrates at the pilot scale (29). Anaerobic reactors have also been developed for treating trichloroethylene. Eor example, Wu and co-workers (30) have developed a successful upflow anaerobic methanogenic bioreactor that converts trichloroethylene and several other halogenated compounds to ethylene. [Pg.32]

Actinide ions form complex ions with a large number of organic substances (12). Their extractabiUty by these substances varies from element to element and depends markedly on oxidation state. A number of important separation procedures are based on this property. Solvents that behave in this way are thbutyl phosphate, diethyl ether [60-29-7J, ketones such as diisopropyl ketone [565-80-5] or methyl isobutyl ketone [108-10-17, and several glycol ether type solvents such as diethyl CeUosolve [629-14-1] (ethylene glycol diethyl ether) or dibutyl Carbitol [112-73-2] (diethylene glycol dibutyl ether). [Pg.220]

Many simple systems that could be expected to form ideal Hquid mixtures are reasonably predicted by extending pure-species adsorption equiUbrium data to a multicomponent equation. The potential theory has been extended to binary mixtures of several hydrocarbons on activated carbon by assuming an ideal mixture (99) and to hydrocarbons on activated carbon and carbon molecular sieves, and to O2 and N2 on 5A and lOX zeoHtes (100). Mixture isotherms predicted by lAST agree with experimental data for methane + ethane and for ethylene + CO2 on activated carbon, and for CO + O2 and for propane + propylene on siUca gel (36). A statistical thermodynamic model has been successfully appHed to equiUbrium isotherms of several nonpolar species on 5A zeoHte, to predict multicomponent sorption equiUbria from the Henry constants for the pure components (26). A set of equations that incorporate surface heterogeneity into the lAST model provides a means for predicting multicomponent equiUbria, but the agreement is only good up to 50% surface saturation (9). [Pg.285]

Olefin fibers, also called polyolefin fibers, are defined as manufactured fibers in which the fiber-forming substance is a synthetic polymer of at least 85 wt % ethylene, propjiene, or other olefin units (1). Several olefin polymers are capable of forming fibers, but only polypropylene [9003-07-0] (PP) and, to a much lesser extent, polyethylene [9002-88-4] (PE) are of practical importance. Olefin polymers are hydrophobic and resistant to most solvents. These properties impart resistance to staining, but cause the polymers to be essentially undyeable in an unmodified form. [Pg.312]

Polyamines can also be made by reaction of ethylene dichloride with amines (18). Products of this type are sometimes formed as by-products in the manufacture of amines. A third type of polyamine is polyethyleneimine [9002-98-6] which can be made by several routes the most frequently used method is the polymeriza tion of azitidine [151 -56 ] (18,26). The process can be adjusted to vary the amount of branching (see Imines, cyclic). Polyamines are considerably lower in molecular weight compared to acrylamide polymers, and therefore their solution viscosities are much lower. They are sold commercially as viscous solutions containing 1—20% polymer, and also any by-product salts from the polymerization reaction. The charge on polyamines depends on the pH of the medium. They can be quaternized to make their charge independent of pH (18). [Pg.33]

Some representative backbone stmctures of PQs and PPQs and their T data are given in Table 1. As in other amorphous polymers, the Ts of PQs and PPQs are controlled essentially by the chemical stmcture, molecular weight, and thermal history. Several synthetic routes have been investigated to increase the T and also to improve the processibiUty of PPQ (71). Some properties of PPQ based on 2,3-di(3,4-diaminophenyl)quinoxaline and those of l,l-dichloro-2,2-bis(3,4-diaminophenyl)ethylene are summarized in Table 2. [Pg.536]


See other pages where Ethylene severity is mentioned: [Pg.25]    [Pg.289]    [Pg.297]    [Pg.53]    [Pg.419]    [Pg.25]    [Pg.289]    [Pg.297]    [Pg.53]    [Pg.419]    [Pg.855]    [Pg.385]    [Pg.386]    [Pg.434]    [Pg.436]    [Pg.235]    [Pg.460]    [Pg.1045]    [Pg.1]    [Pg.55]    [Pg.14]    [Pg.31]    [Pg.141]    [Pg.431]    [Pg.239]    [Pg.443]    [Pg.173]    [Pg.428]    [Pg.293]    [Pg.515]    [Pg.281]    [Pg.358]    [Pg.360]    [Pg.366]   
See also in sourсe #XX -- [ Pg.82 , Pg.83 , Pg.83 ]




SEARCH



Ethylene/Propylene Yield severity

© 2024 chempedia.info