Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matrices polyester

Table 9.2. Increase of Young s modulus and tensile strength of a duromer matrix (polyester resin) by addition of glass fibres with a volume fraction of 65% to 70% [77]... Table 9.2. Increase of Young s modulus and tensile strength of a duromer matrix (polyester resin) by addition of glass fibres with a volume fraction of 65% to 70% [77]...
A polymer composite is a hybrid material that incorporates a non-polymeric component into the bulk polymeric material in order to improve or alter its function. Fiberglass is an example that integrates glass fibers into the interior of a polymeric matrix (polyester) to increase the polymer s strength. A polymer nanocomposite (PNC) is a polymer composite in which the non-polymeric component has at least one dimension in the nanoscale. PNCs can be divided into two major categories those that incorporate the nano-elements as fillers (in the interior of the matrix) and those that incorporate the nano-elements as coatings (on the exterior surface of the matrix) (Fig. 4.2). [Pg.100]

A new class of materials called smart tagged composites has been developed for stmctural health monitoring appHcations. These composites consist of PZT-5A particles embedded into the matrix resin (unsaturated polyester) of the composite (16). [Pg.249]

The next approach to incorporate the 12F-diol into a polyurethane matrix was reaction of the y -12F-diol with aUphatic diacid chlorides (where a = 3 or 4) to give low molar mass polyesters (141) ... [Pg.540]

Fig. 2. Ultrafine fibers are produced by spinning bicomponent or biconstituent polymer mixtures, highly stretching such products to ultrafine deniers, and extracting or otherwise removing the undesked matrix carrier to release the desked ultrafine fibers (30). For example, spinning polyester islands in a matrix of polystyrene and then, after stretching, dissolving the polystyrene to leave the polyester fibers cospinning polyester with polyamides, then stretching,... Fig. 2. Ultrafine fibers are produced by spinning bicomponent or biconstituent polymer mixtures, highly stretching such products to ultrafine deniers, and extracting or otherwise removing the undesked matrix carrier to release the desked ultrafine fibers (30). For example, spinning polyester islands in a matrix of polystyrene and then, after stretching, dissolving the polystyrene to leave the polyester fibers cospinning polyester with polyamides, then stretching,...
A polyester-type fluorescent resin matrix (22) is made by heating trimellitic anhydride, propylene glycol, and phthaUc anhydride with catalytic amounts of sulfuric acid. Addition of Rhodamine BDC gives a bright bluish red fluorescent pigment soluble in DME and methanol. It has a softening point of 118°C. Exceptional heat resistance and color brilliance are claimed for products of this type, which are useful for coloring plastics. [Pg.301]

The use of steam is generally limited to polypropyleae and polyethylene fusion because impractical pressures are required to reach the temperature levels, eg, >200° C, required for bonding polyesters. In general, greater temperature control is required for area bonding polypropylene than for other polymers because the temperature difference between the matrix and biader fibers can be only 3°C (26). [Pg.168]

Mechanical Properties. Properties of typical grades of PBT, either as unfiUed neat resin, glass-fiber fiUed, and FR-grades, are set out in Table 8. This table also includes impact-modified grades which incorporate dispersions of elastomeric particles inside the semicrystalHne polyester matrix. These dispersions act as effective toughening agents which greatly improve impact properties. The mechanisms are not fiiUy understood in all cases. The subject has been discussed in detail (171) and the particular case of impact-modified polyesters such as PBT has also been discussed (172,173). [Pg.300]

A number of after-treatments with polyester copolymers carried out after sodium hydroxide processing are reported to produce a more hydrophilic polyester fabric (197). Likewise, the addition of a modified cellulose ether has improved water absorbency (198). Other treatments used on cotton and blends are also effective on 100% polyester fabrics (166—169). In this case, polymeri2ation is used between an agent such as DMDHEU and a polyol to produce a hydrophilic network in the synthetic matrix (166—169). [Pg.449]

The thermoplastic or thermoset nature of the resin in the colorant—resin matrix is also important. For thermoplastics, the polymerisation reaction is completed, the materials are processed at or close to their melting points, and scrap may be reground and remolded, eg, polyethylene, propjiene, poly(vinyl chloride), acetal resins (qv), acryhcs, ABS, nylons, ceUulosics, and polystyrene (see Olefin polymers Vinyl polymers Acrylic ester polymers Polyamides Cellulose ESTERS Styrene polymers). In the case of thermoset resins, the chemical reaction is only partially complete when the colorants are added and is concluded when the resin is molded. The result is a nonmeltable cross-linked resin that caimot be reworked, eg, epoxy resins (qv), urea—formaldehyde, melamine—formaldehyde, phenoHcs, and thermoset polyesters (qv) (see Amino resins and plastics Phenolic resins). [Pg.456]

Phenohc resins (qv), once a popular matrix material for composite materials, have in recent years been superseded by polyesters and epoxies. Nevertheless, phenohc resins stiU find considerable use in appHcations where high temperature stabiHty and fire resistance are of paramount importance. Typical examples of the use of phenoHc resins in the marine industry include internal bulkheads, decks, and certain finishings. The curing process involves significant production of water, often resulting in the formation of voids within the volume of the material. Further, the fact that phenoHcs are prone to absorb water in humid or aqueous conditions somewhat limits their widespread appHcation. PhenoHc resins are also used as the adhesive in plywood, and phenohc molding compounds have wide use in household appliances and in the automotive, aerospace, and electrical industries (12). [Pg.7]

Thermosetting unsaturated polyester resins constitute the most common fiber-reinforced composite matrix today. According to the Committee on Resin Statistics of the Society of Plastics Industry (SPl), 454,000 t of unsaturated polyester were used in fiber-reinforced plastics in 1990. These materials are popular because of thek low price, ease of use, and excellent mechanical and chemical resistance properties. Over 227 t of phenoHc resins were used in fiber-reinforced plastics in 1990 (1 3). PhenoHc resins (qv) are used when thek inherent flame retardance, high temperature resistance, or low cost overcome the problems of processing difficulties and lower mechanical properties. [Pg.18]

Polyesters. Polyesters (qv) are widely used as the matrix for conventional composites. Two resins of particular importance because of the large amounts used are (poly(ethylene terephthalate) [25038-59-9] (PET) and poly(butylene terephthalate) [24968-12-5] (PBT). Although polyesters can be made from diacids and diols by direct condensation. [Pg.37]

The generic thermosets are the epoxies and the polyesters (both widely used as matrix materials for fibre-reinforced polymers) and the formaldehyde-based plastics (widely used for moulding and hard surfacing). Other formaldehyde plastics, which now replace bakelite, are ureaformaldehyde (used for electrical fittings) and melamine-formaldehyde (used for tableware). [Pg.221]

Polymer-matrix composites for aerospace and transport are made by laying up glass, carbon or Kevlar fibres (Table 25.1) in an uncured mixture of resin and hardener. The resin cures, taking up the shape of the mould and bonding to the fibres. Many composites are based on epoxies, though there is now a trend to using the cheaper polyesters. [Pg.264]

A composite material for a car-repair kit consists of a random mixture of short glass fibres in a polyester matrix. Estimate the maximum toughness of the composite. You may assume that the volume fraction of glass is 30% the fibre diameter is 15 pm the fracture strength of the fibres is 1400 MPa and the shear strength of the matrix is 30 MPa. [Pg.276]

On the organic side of the interface, chemical bonds are formed between the organofunctional R group of the silane and the reactive species in the polymer matrix. For example, a methacrylate- or styryl-functional silane reacts with polyesters copolymerized with styrene or similar monomers, while amino- or chloroalkyl-functional silanes are unsuitable in this particular case. Polybutadiene... [Pg.408]

Polyesters. The main application of this material is as a matrix for glass fibre reinforcement. This can take many forms and is probably most commonly known as a DIY type material used for the manufacture of small boats, chemical containers, tanks and repair kits for cars, etc. [Pg.17]

A polyester matrix is reinforced with continuous glass fibres. A 15 mm wide beam made from this material is to be simply supported over a 300 mm length and have a point load at midspan. For a fixed beam weight of 90 g/m investigate how the stiffness of the beam changes with the volume fraction of glass and state the optimum volume fraction, (p/ = 2560 kg/m. p , = 1210 kg/m Ef = 76 GN/m = 3 GN/m ). [Pg.243]


See other pages where Matrices polyester is mentioned: [Pg.381]    [Pg.364]    [Pg.751]    [Pg.88]    [Pg.381]    [Pg.381]    [Pg.364]    [Pg.751]    [Pg.88]    [Pg.381]    [Pg.310]    [Pg.380]    [Pg.531]    [Pg.590]    [Pg.625]    [Pg.629]    [Pg.938]    [Pg.1056]    [Pg.139]    [Pg.309]    [Pg.258]    [Pg.321]    [Pg.322]    [Pg.84]    [Pg.321]    [Pg.5]    [Pg.326]    [Pg.3]    [Pg.7]    [Pg.7]    [Pg.9]    [Pg.18]    [Pg.185]    [Pg.117]    [Pg.277]    [Pg.417]    [Pg.240]   
See also in sourсe #XX -- [ Pg.393 ]




SEARCH



Carbon fiber-polyester matrix

Glass fiber polyester matrix composite

Polyester resins as a matrix material

Polyester-epoxy matrix, mechanical properties

Polyesters as matrix materials

Polyesters matrix materials

Thermoset matrices polyester

Unsaturated polyester crosslinked matrix

© 2024 chempedia.info