Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2- ethyl acrylate materials

Mechanical and Thermal Properties. The first member of the acrylate series, poly(methyl acrylate), has fltde or no tack at room temperature it is a tough, mbbery, and moderately hard polymer. Poly(ethyl acrylate) is more mbberflke, considerably softer, and more extensible. Poly(butyl acrylate) is softer stiU, and much tackier. This information is quantitatively summarized in Table 2 (41). In the alkyl acrylate series, the softness increases through n-octy acrylate. As the chain length is increased beyond n-octy side-chain crystallization occurs and the materials become brittle (42) poly( -hexadecyl acrylate) is hard and waxlike at room temperature but is soft and tacky above its softening point. [Pg.163]

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

Acryhc elastomers are normally stable and not reactive with water. The material must be preheated before ignition can occur, and fire conditions offer no hazard beyond that of ordinary combustible material (56). Above 300°C these elastomers may pyrolize to release ethyl acrylate and other alkyl acrylates. Otherwise, thermal decomposition or combustion may produce carbon monoxide, carbon dioxide, and hydrogen chloride, and/or other chloiinated compounds if chlorine containing monomers are present ia the polymer. [Pg.478]

Ethylene-ethyl acrylate copolymers are very similar to the ethylene-vinyl acetate copolymers. The former materials are considered to have higher abrasion resistance and heat resistance whilst the EVA have been considered to be tougher and of greater clarity. [Pg.277]

The reaction of methyl or ethyl acrylate with the enamine of an alicyclic ketone results in simple alkylation when the temperature is allowed to rise uncontrolled in the reaction mixture (7,34,35). If the reaction mixture is kept below 30°C, however, a mixture of the simple alkylated and cyclobutane (from 1,2 cycloaddition) products are obtained (34). Upon distillation of this mixture only starting material and simple alkylated product is obtained because of the instability of the cyclobutane adduct. [Pg.218]

An interesting parallel was found while the microwave-enhanced Heck reaction was explored on the C-3 position of the pyrazinone system [29]. The additional problem here was caused by the capability of the alkene to undergo Diels-Alder reaction with the 2-azadiene system of the pyrazinone. An interesting competition between the Heck reaction and the Diels-Alder reaction has been noticed, while the outcome solely depended on the substrates and the catalyst system. Microwave irradiation of a mixture of pyrazinone (Re = H), ethyl acrylate (Y = COOEt) and Pd(dppf)Cl2 resulted in the formation of a mixture of the starting material together with the cycloaddition product in a 3 1 ratio (Scheme 15). On the contrary, when Pd(OAc)2 was used in combination with the bulky phosphine ligand 2-(di-t-butylphosphino)biphenyl [41-44], the Heck reaction product was obtained as the sole product. When a mixture of the pyrazinone (Re = Ar) with ethyl acrylate or styrene and Pd(dppf)Cl2 was irradiated at 150 °C for 15 min, both catalytic systems favored the Heck reaction product with no trace of Diels-Alder adduct. [Pg.278]

A tandem palladium catalyzed multi-component approach has been devised providing direct access to for instance trisubstituted thiophenes from the simple starting material 3-iodothiophene 41. In a representative experiment, the substrate 41 was converted to the product 42 by treatment with ethyl acrylate and iodobutane in the presence of a catalytic system consisting of Pd(OAc)2, tri(2-furyl)phosphine (TFP), norbomene, and a base. A mechanistic rationale accounting for this outcome was also proposed <06OL3939>. [Pg.117]

Although the above chemical structure is used as an example, acrylates are a class of materials rather than one single type. These polymers are formed by the copolymerisation of an acrylic ester and a cure site monomer, ethyl acrylate and chloroethyl vinyl ether respectively being illustrated above. [Pg.102]

As a chemical raw material, ethanol is used for the production of a range of monomers and solvents, and is essential in pharmaceutical purification. In the presence of an acid catalyst ethanol reacts with carboxylic acids to produce ethyl esters. The two largest-volume ethyl esters are ethyl acrylate (from ethanol and acrylic acid) and ethyl acetate (from ethanol and acetic acid). Ethyl acrylate is a... [Pg.203]

The starting material 4 is easily prepared in 88% yield by a Diels-Alder reaction of 1,3-cyclohexadiene and ethyl acrylate as described by Skeda and Tramposch [5] (Scheme 13.1.5). Whitlock found by v.p.c. that the endo derivative is by far the... [Pg.341]

C The Epoxy Resists. The first negative tone electron beam resist materials with useful sensitivity were based on utilizing the radiation chemistry of the oxirane or epoxy moiety. The most widely used of these materials, COP (Figure 32) is a copolymer of glycidyl methacrylate and ethyl acrylate and was developed at Bell Laboratories (43,44). COP has found wide applicability in the manufacturing of photomasks. The active element... [Pg.128]

Opdyke DLJ Monographs on fragrance raw materials, ethyl acrylate. Food Cosmet Toxicol Suppl 13 801-802, 1975... [Pg.308]

Since the 1950s, synthetic polymers have been used as art binders. The most common groups are referred to as the vinyls and acrylics by artists. Both groupings represent a wide variety of polymers and copolymers and are inaccurately, or at best not accurately, named. For polymer scientists, the term vinyl generally refers to PVC, but to artists it may refer to many other materials. Even so, most of the synthetic paint market today is based on acrylics. Acrylic paints are typically water emulsions of synthetic polymers. In art, the term acrylic is used to describe a wide variety of polymers and copolymers that can be considered as derivatives of acrylic acids. Most acrylics used in art binders are PMMA (Equation 6.61), PVAc (Equation 6.64), poly( -butyl methacrylate) (Equation 6.65), and copolymers such as poly(ethyl acrylate-comethacrylate). [Pg.199]

Approaches to oseltamivir phosphate (1) that were independent of ( )-shikimic acid as the raw material were also evaluated. The furan-ethyl acrylate Diels-Alder approach is shown in Scheme 7.8 (Abrecht et al., 2001, 2004). The zinc-catalyzed Diels-Alder reaction between furan and ethyl acrylate was heated at 50°C for 72 h to provide a 9 1 mixture favoring exo-isomer rac-43 over the enJo-isomer. The enJo-isomer was kinetically preferred, but with increased reaction times an equilibrium ratio of 9 1 was achieved favoring the thermodynamically preferred exo-isomer rac-43. The optical resolution of rac-43 was achieved via enantioselective ester hydrolysis using Chirazyme L-2 to give (—)-43 in 97%... [Pg.105]

Doyle et al. (34) were the first group to generate isomiinchnones from diazo imides using Rh(II) catalysis. For example, isomiinchnone 60 was produced from diazo imide 59, but attempts to trap this species with ethyl acrylate were unsuccessful. The only material identified was the isomiinchnone hydrolysis product. This use of Rh(II) to generate a rhodium-carbenoid species from an a-diazo carbonyl compound is reminiscent of the first successful synthesis of... [Pg.689]

Tlie use of polymer blends has been a very important approach in the development of new materials for evolving applications, as it is less costly than developing new polymers. The compatibility of poly(vinylidene fluoride) (PVDF) with various polymers has been comprehensively evaluated and has led to useful applications in coatings and films. Poly(methyl methacrylate) has been the most studied compatible polymer with PVDF owing to cost and performance advantages. Other acrylic polymers such as poly(ethyl methacrylate), poly(methyl acrylate), and poly(ethyl acrylate) have also been found to be compatible with PVDF. ... [Pg.121]

These are made in emulsion or suspension systems involving the copolymerization of ethyl acrylate with the acrylate esters of higher-molecular-weight alcohols. These materials have excellent sulvenl-resi.stunl properties and stability at elevated temperatures. A major use is fur automatic-transmission gaskets lor automobiles. [Pg.541]

A. 1 -(2-Carbethoxyethyl)azetidine. A solution of 150 g. (2.0 mol es) of 3-amino-1-propanol in 500 g. (5.0 moles) of ethyl acrylate (Note 1) is refluxed for 2 hours in a 1-1. round-bottomed flask. Subsequent vacuum stripping of the excess ethyl acrylate at steam temperature furnishes 548 g. (99%) of crude diethyl 3-N-(3-h ydroxypropyl)iminodipropionate. A stirred, cooled solution of this material (548 g.) in 1 1. of chloroform and 10 ml. of dimethjrlformamide is treated dropwise with 262 g. (2.2 moles) of thion yl chloride. By cooling with an ice bath and controlling the addition rate, the reaction temperature is maintained below 40° (Note 2). After the addition is complete, the reaction m i xture is stirred for 30 minutes at room temperature and poured... [Pg.13]

Acrylic acid and its salts are raw materials for an important range of esters, including methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate. The acid and its esters are used in polyacrylic acid and salts (including superabsorbent polymers, detergents, water treatment chemicals, and dispersants), surface coatings, adhesives and sealants, textiles, and plastic modifiers. [Pg.26]

Carbon monoxide is an important raw material in the production of methanol and other alcohols and of hydrocarbons, and it is a powerful poison. It is also used for making diisocyanate and ethyl acrylate. [Pg.150]

Another approach to improving the properties of starch-filled polyolefin materials involves the use of ethylene-acrylate copolymers in blends with PE.45 Addition of copolymers of ethylene with methyl acrylate, ethyl acrylate or butyl acrylate were shown to improve the properties of PE films, allowing for higher starch contents. Coextrusion of starch-containing films with outer layers incorporating oxidative pro-degradants has also been utilized 46 The inner layer can contain up to 40% starch the... [Pg.721]

Another type of important linear polymers are the acrylates and methacrylates. In Figure 2.35, the repeating unit with two side groups from which these polymer types are derived is shown [195,197]. In Table 2.3, three examples of this type of polymers, specifically, poly (ethyl acrylate), which is applied in paints poly (methyl methacrylate), which is applied fundamentally as a construction material in place of glass and poly (ethyl methacrylate), which is applied as adhesives, are reported. [Pg.91]

Ethylene Copolymers. Ethylene copolymers probably are the most important materials in hot-melt formulations. Ethylene-vinyl acetate and ethylene-ethyl acrylate polymers are very versatile and available in a wide range of grades offering different co-monomer contents and viscosities. The melts are stable and compatible with various modifying resins, waxes, extenders, and fillers. Adhesion to many substrates is good—including the polyolefin plastics, which are difficult to bond with most other types of adhesive unless the surfaces are pre-treated. [Pg.98]

These materials are the reaction product of a primary amine and either acrylic acid, an ester of acrylic acid such as methyl acrylate, ethyl acrylate or crotonic acid. Either 1 or 2 mol of acrylate is used. If 1 mol is added, an N-alkyl (3-alanine is produced (Figure 6.6) and if 2 mol of acrylate per mole of amine is used, the corresponding carboxyethyl (3 -alanine derivative is produced (Figure 6.7). [Pg.170]

Synthetic ethanol has the following uses as a chemical intermediate (for ethyl acetate, ethyl acrylate, glycol ethers, ethylamines, etc.), 30 percent in toiletries and cosmetics, 20 percent as a coatings solvent, 15 percent as a raw material for vinegar, 10 percent in household cleaners, 7 percent in detergents, 5 percent in pharmaceuticals, 5 percent in printing inks, 3 percent and in miscellaneous uses, 5 percent. [Pg.364]


See other pages where 2- ethyl acrylate materials is mentioned: [Pg.156]    [Pg.105]    [Pg.417]    [Pg.916]    [Pg.22]    [Pg.128]    [Pg.59]    [Pg.248]    [Pg.23]    [Pg.103]    [Pg.730]    [Pg.137]    [Pg.198]    [Pg.28]    [Pg.358]    [Pg.423]    [Pg.29]    [Pg.138]    [Pg.358]    [Pg.625]    [Pg.18]    [Pg.790]    [Pg.50]    [Pg.129]    [Pg.195]    [Pg.156]   


SEARCH



Acrylates ethyl acrylate

Materials acrylates

© 2024 chempedia.info