Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material Involved

The market values and molecular weights of the materials involved are given in Table 2.1. Oxygen is considered to be free at this stage, coming from the... [Pg.16]

What is the minimum selectivity of decane which must be achieved for profitable operation The values of the materials involved together with their molecular weights are given in Table 4.1. [Pg.102]

The radiation and temperature dependent mechanical properties of viscoelastic materials (modulus and loss) are of great interest throughout the plastics, polymer, and rubber from initial design to routine production. There are a number of laboratory research instruments are available to determine these properties. All these hardness tests conducted on polymeric materials involve the penetration of the sample under consideration by loaded spheres or other geometric shapes [1]. Most of these tests are to some extent arbitrary because the penetration of an indenter into viscoelastic material increases with time. For example, standard durometer test (the "Shore A") is widely used to measure the static "hardness" or resistance to indentation. However, it does not measure basic material properties, and its results depend on the specimen geometry (it is difficult to make available the identity of the initial position of the devices on cylinder or spherical surfaces while measuring) and test conditions, and some arbitrary time must be selected to compare different materials. [Pg.239]

Section 2 combines the former separate section on Mathematics with the material involving General Information and Conversion Tables. The fundamental physical constants reflect values recommended in 1986. Physical and chemical symbols and definitions have undergone extensive revision and expansion. Presented in 14 categories, the entries follow recommendations published in 1988 by the lUPAC. The table of abbreviations and standard letter symbols provides, in a sense, an alphabetical index to the foregoing tables. The table of conversion factors has been modified in view of recent data and inclusion of SI units cross-entries for archaic or unusual entries have been curtailed. [Pg.1286]

Thus, the metallurgy of welds, comprising the weld metal and surrounding heat-affected zone, is influenced not only by the composition of the materials involved, but also by the welding process, the specific procedures for applying the process, and the heat-transfer characteristics (deterrnined by material, mass, and geometry) of the welded joint (9—12). [Pg.346]

Microchemical or ultramicrochemical techniques are used extensively ia chemical studies of actinide elements (16). If extremely small volumes are used, microgram or lesser quantities of material can give relatively high concentrations in solution. Balances of sufficient sensitivity have been developed for quantitative measurements with these minute quantities of material. Since the amounts of material involved are too small to be seen with the unaided eye, the actual chemical work is usually done on the mechanical stage of a microscope, where all of the essential apparatus is in view. Compounds prepared on such a small scale are often identified by x-ray crystallographic methods. [Pg.216]

Sampling of Gaseous Pollutants. Gaseous poUutant detection is dependent upon the chemistry of the material involved. [Pg.384]

Extraction of hemiceUulose is a complex process that alters or degrades hemiceUulose in some manner (11,138). Alkaline reagents that break hydrogen bonds are the most effective solvents but they de-estetify and initiate -elimination reactions. Polar solvents such as DMSO and dimethylformamide are more specific and are used to extract partiaUy acetylated polymers from milled wood or holoceUulose (11,139). Solvent mixtures of increasing solvent power are employed in a sequential manner (138) and advantage is taken of the different behavior of various alkaUes and alkaline complexes under different experimental conditions of extraction, concentration, and temperature (4,140). Some sequences for these elaborate extraction schemes have been summarized (138,139) and an experimenter should optimize them for the material involved and the desired end product (102). [Pg.33]

The posterior lobe of the pituitary, ie, the neurohypophysis, is under direct nervous control (1), unlike most other endocrine organs. The hormones stored in this gland are formed in hypothalamic nerve cells but pass through nerve stalks into the posterior pituitary. As early as 1895 it was found that pituitrin [50-57-7] an extract of the posterior lobe, raises blood pressure when injected (2), and that Pitocin [50-56-6] (Parke-Davis) causes contractions of smooth muscle, especially in the utems (3). Isolation of the active materials involved in these extracts is the result of work from several laboratories. Several highly active posterior pituitary extracts have been discovered (4), and it has been deterrnined that their biological activities result from peptide hormones, ie, low molecular weight substances not covalendy linked to proteins (qv) (5). [Pg.187]

A mathematical analysis of the action in Kady and other colloid mills checks well with experimental performance [Turner and McCarthy, Am. Inst. Chem. Eng. J., 12(4), 784 (1966)], Various models of the Kady mill have been described, and capacities and costs given by Zimmerman and Lavine [Co.st Eng., 12(1), 4-8 (1967)]. Energy requirements differ so much with the materials involved that other devices are often used to obtain the same end. These include high-speed stirrers, turbine mixers, bead mills, and vibratoiy mills. In some cases, sonic devices are effec tive. [Pg.1864]

Laboratoiy procedures may need to be evaluated against the sampling techniques and materials involved in the toll. There may be new laboratoiy chemicals and hazards to be considered. This work may have been identified in the evaluation of special analytical techniques required for the process. A good practice is to ensure that the lab technicians have the necessaiy guidance and types of equipment on hand to monitor the process and waste streams accurately and safely. [Pg.88]

During the manufacture of glass, considerable dust, with particles averaging about 300 /xm in size, will be emitted. Some dusts may also be emitted from the handling of the raw materials involved. Control of this dust to prevent a nuisance problem outside the plant is a necessity. When glass is blown or formed into the finished product, smoke and gases can be released from the contact of the molten glass with lubricated molds. These emissions are quite dense but of a relatively short duration. [Pg.89]

These brief examples of developments in semiconductor technology and optoelectronics are offered to give the flavour of recent semiconductor research. An accessible technical account of MBE and its triumphs can be found in an overview by Cho (1995), while a more impressionistic but very vivid account of Capasso and his researches at Bell Labs is in a popular book by Amato (1997). A very extensive historical survey of the enormous advances in optical and optoelectronic physics , with attention to the materials involved, is in a book chapter by Brown and Pike (1995). [Pg.268]

Viscoelastic polymers essentially dominate the multi-billion dollar adhesives market, therefore an understanding of their adhesion behavior is very important. Adhesion of these materials involves quite a few chemical and physical phenomena. As with elastic materials, the chemical interactions and affinities in the interface provide the fundamental link for transmission of stress between the contacting bodies. This intrinsic resistance to detachment is usually augmented several folds by dissipation processes available to the viscoelastic media. The dissipation processes can have either a thermodynamic origin such as recoiling of the stretched polymeric chains upon detachment, or a dynamic and rate-sensitive nature as in chain pull-out, chain disentanglement and deformation-related rheological losses in the bulk of materials and in the vicinity of interface. [Pg.122]

In general, the environmental consequences resulting from emissions generated by the combustion of treated wood and the chemicals used to treat them are not well understood. Combustion of the materials involved in the incident unquestionably produced hazardous products of incomplete combustion emissions (e.g., dioxins and furans). [Pg.335]

Mass Transfer Rale Consideralions - As discussed previously, the mass transfer mechanism involved in industrial adsorption processes is complex. Generally, basic physical data on the materials involved are insufficient for design. Experimental mass transfer rate data for the specific adsorbate-adsorbent system are usually required for good design. [Pg.465]

No life threatening situation from materials involved. [Pg.13]

The released energy might result from the wanted reaction or from the reaction mass if the materials involved are thermodynamically unstable. The accumulation of the starting materials or intermediate products is an initial stage of a runaway reaction. Figure 12-6 illustrates the common causes of reactant accumulation. The energy release with the reactant accumulation can cause the batch temperature to rise to a critical level thereby triggering the secondary (unwanted) reactions. Thermal runaway starts slowly and then accelerates until finally it may lead to an explosion. [Pg.920]

The bending of the graphite planes necessary to form a buckytube changes the band parameters. The relevant dimensionless parameter is the ratio a/R, where a ( = 3.4 A) is the lattice constant and R is the buckytube radius. For / = 20 A, the shift is expected to alter the nature of the conductivity[13-16j. In our buckybundle samples, most of material involves buckytubes with R > 100 A confirmed by statistical analysis of TEM data, and we assume that the elec-... [Pg.114]

Elementary single-component systems are those that have just one chemical species or material involved in the process. Filling of a vessel is an example of this kind. The component can be a solid liquid or gas. Regardless of the phase of the component, the time dependence of the process is captured by the same statement of the conservation of mass within a well-defined region of space that we will refer to as the control volume. [Pg.59]


See other pages where Material Involved is mentioned: [Pg.1893]    [Pg.2615]    [Pg.2714]    [Pg.249]    [Pg.5]    [Pg.157]    [Pg.179]    [Pg.355]    [Pg.100]    [Pg.114]    [Pg.555]    [Pg.422]    [Pg.529]    [Pg.506]    [Pg.326]    [Pg.522]    [Pg.138]    [Pg.140]    [Pg.1640]    [Pg.1770]    [Pg.1774]    [Pg.2306]    [Pg.7]    [Pg.101]    [Pg.18]    [Pg.51]    [Pg.195]    [Pg.247]    [Pg.292]    [Pg.689]    [Pg.617]   


SEARCH



Electrochemical Processes Involving Porous Materials

Material suppliers, involvement

Solving Material Balance Problems Involving Multiple Subsystems

Solving Material Balance Problems Involving Simultaneous Equations

© 2024 chempedia.info