Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Di oxalate

The ethyl acetate is dried with anhydrous sodium sulfate, filterad and dried off. The oily residue is dissolved in 600 cc of methanol the di-oxalate is precipitated by the addition of a solution of oxalic acid in methanol. Yield 85%, melting point 190°C to 192°C (crystallized by methanol). Microcrystalline substance, creamy white color. [Pg.1304]

M-Butyl formate. Ethyl iso-butyrate IsO -butyl acetate Ethyl butyrate -Propyl propionate Iso-amyl formate, -But> l acetate Iso-propyl butyrate Iso-butyl propionate n-Propyl -butyrate -Butyl propionate Iso-butyl isobutyrate Ethyl lactate Iso-butyl butyrate Cycloheicyl formate -Butyl -butyrate Iso-propyl lactate. Cyclohexyl acetate Diethyl oxalate Di-iao-propyl oxalate... [Pg.544]

Successful results have been obtained (Renfrew and Chaney, 1946) with ethyl formate methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec.-butyl and iso-amyl acetat ethyleneglycol diacetate ethyl monochloro- and trichloro-acetates methyl, n-propyl, n-octyl and n-dodecyl propionates ethyl butyrate n-butyl and n-amyl valerates ethyl laurate ethyl lactate ethyl acetoacetate diethyl carbonate dimethyl and diethyl oxalates diethyl malonate diethyl adipate di-n-butyl tartrate ethyl phenylacetate methyl and ethyl benzoates methyl and ethyl salicylates diethyl and di-n-butyl phthalates. The method fails for vinyl acetate, ieri.-butyl acetate, n-octadecyl propionate, ethyl and >i-butyl stearate, phenyl, benzyl- and guaicol-acetate, methyl and ethyl cinnamate, diethyl sulphate and ethyl p-aminobenzoate. [Pg.393]

Oxidative carbonylation of alcohols with PdCh affords the carbonate 572 and oxalate 573(512-514]. The selectivity of the mono- and dicarbonylation depends on the CO pressure and reaction conditions. In order to make the reaction catalytic, Cu(II) and Fe(III) salts are used. Under these conditions, water is formed and orthoformate is added in order to trap the water. Di-/-butyl peroxide is also used for catalytic oxidative carbonylation to give carbonates and oxalates in the presence of 2,6-dimetliylpyridine(515]. [Pg.105]

ROOC—COOH, are not. The dialkyl esters are characterized by good solvent properties and serve as starting materials in the synthesis of many organic compounds, such as pharmaceuticals, agrochemicals, and fine chemicals (qv). Among the diesters, dimethyl, diethyl, and di- -butyl oxalates are industrially important. Their physical properties are given in Table 7. [Pg.463]

Carboxylates, Oxalates, and Catecholates. Complexes of Th(IV) with mono-, di-, tri-, and polycarboxylates have been extensively studied. Monocarboxylates, RCOO , have been complexed with Th(IV), eg, Th(RCOO)4, where R = H, CH, CCl, or and M Th(HC02)4, ... [Pg.39]

N-Alkylations, especially of oxo-di- and tetra-hydro derivatives, e.g. (28)->(29), have been carried out readily using a variety of reagents such as (usual) alkyl halide/alkali, alkyl sulfate/alkali, alkyl halide, tosylate or sulfate/NaH, trialkyloxonium fluoroborate and other Meerwein-type reagents, alcohols/DCCI, diazoalkanes, alkyl carbonates, oxalates or malon-ates, oxosulfonium ylides, DMF dimethyl acetal, and triethyl orthoformate/AcjO. Also used have been alkyl halide/lithium diisopropylamide and in one case benzyl chloride on the thallium derivative. In neutral conditions 8-alkylation is observed and preparation of some 8-nucleosides has also been reported (78JOC828, 77JOC997, 72JOC3975, 72JOC3980). [Pg.206]

Bromophenol blue (3.0...4.6) aliphatic carboxylic acids [225 — 228] malonic and lactic acids [229] palmitic and lactic acids [230] malonic, glycolic, malic, citric, tartaric, ketoglutaric, galacturonic and oxalic acids [196] dicarboxylic acids, succinic acid [231] indoleacetic acid, trichloroacetic acid [232] palmitic acid, palmityl- and stearyllactic acid [223] benzoic, sorbic and salicylic acid [234] metabolites of ascorbic acid [235] chloropropionic acid [236] oligogalacturonic acids [237] amino acids, hydrocarbons, mono-, di- and triglycerides [238] xylobiose, xylose, glucose and derivatives [239] sugar alcohols [91] toxaphene [240]... [Pg.45]

To this acid was then added 1 g of 4-ethyl-2,3-dioxo-1-piperazinocarbonyl chloride (from the reaction of N-ethylethylenediamine and diethyl oxalate to give 2,3-dioxo-4-ethyl-piperazine which Is then reacted with phosgene) and the resulting mixture was reacted at 15°C to 20°C for 2 hours. After the reaction, a deposited triethylamine hydrochloride was separated by filtration, and the filtrate was incorporated with 0.4 g of n-butanol to deposit crystals. The deposited crystals were collected by filtration to obtain 1.25 g of white crystals of 6-[ D(—l-Ct-(4-ethyl-2,3-dioxo-1 -piperazinocarbonylaminolphenylacetamido] penicillanic acid. Into a solution of these crystals in 30 ml of tetrahydrofuran was dropped a solution of 0.38 g of a sodium salt of 2-ethyl-hexanoic acid in 10 ml of tetrahydrofuran, upon which white crystals were deposited. The deposited crystals were collected by filtration, sufficiently washed with tetrahydrofuran and then dried to obtain 1.25 g of sodium salt of 6-[D(—)-a-(4-ethyl-2,3-di-0X0-1-piperazinocarbonylaminolphenylacetamido] penicillanic acid, melting point 183°C to 185°C (decomposition), yield 90%. [Pg.1245]

H- and 3//-Azepines are generally unstable in aqueous acid solution and the few examples of simple azepinium salts, namely perchlorates,77 bromides,105 picrates35201 and a solitary iodide,105 have been prepared under nonaqueous conditions. The fractional crystallization of oxalate salts has been used for the separation of mixtures of 4- and 6-substituted 3f/-azepines,66 and 3,6-di-tm-butyl- and 2,5-di-tert-butyl-3//-azepine, on treatment with tetrafluoroboric acid in acetonitrile, are converted quantitatively into their crystalline tetrafluoroboratc salts.70... [Pg.160]

Oxalamidinate anions represent the most simple type of bis(amidinate) ligands in which two amidinate units are directly connected via a central C-C bond. Oxalamidinate complexes of d-transition metals have recently received increasing attention for their efficient catalytic activity in olefin polymerization reactions. Almost all the oxalamidinate ligands have been synthesized by deprotonation of the corresponding oxalic amidines [pathway (a) in Scheme 190]. More recently, it was found that carbodiimides, RN = C=NR, can be reductively coupled with metallic lithium into the oxalamidinate dianions [(RN)2C-C(NR)2] [route (c)J which are clearly useful for the preparation of dinuclear oxalamidinate complexes. The lithium complex obtained this way from N,N -di(p-tolyl)carbodiimide was crystallized from pyridine/pentane and... [Pg.307]

Dimethyl peroxide Diethyl peroxide Di-t-butyl-di-peroxyphthalate Difuroyl peroxide Dibenzoyl peroxide Dimeric ethylidene peroxide Dimeric acetone peroxide Dimeric cyclohexanone peroxide Diozonide of phorone Dimethyl ketone peroxide Ethyl hydroperoxide Ethylene ozonide Hydroxymethyl methyl peroxide Hydroxymethyl hydroperoxide 1-Hydroxyethyl ethyl peroxide 1 -Hydroperoxy-1 -acetoxycyclodecan-6-one Isopropyl percarbonate Isopropyl hydroperoxide Methyl ethyl ketone peroxide Methyl hydroperoxide Methyl ethyl peroxide Monoperoxy succinic acid Nonanoyl peroxide (75% hydrocarbon solution) 1-Naphthoyl peroxide Oxalic acid ester of t-butyl hydroperoxide Ozonide of maleic anhydride Phenylhydrazone hydroperoxide Polymeric butadiene peroxide Polymeric isoprene peroxide Polymeric dimethylbutadiene peroxide Polymeric peroxides of methacrylic acid esters and styrene... [Pg.163]

None 100 Zinc formate 44 Zinc carbonate 42 Zinc sulfate 43 Zinc oxalate 39 Zinc chloride 8 Zinc acetate 7 Zinc benzoate 2 Zinc 3,5-di-tert-butyl-4-hydroxybenzoate 1... [Pg.156]

In most terrestrial plant-pathogen interactions a diphenylene-iodonium (DPI)-sensitive (O Donnell et al. 1993), membrane-located, and receptor-activated NADPH oxidase generates superoxide radicals (Levine et al. 1994 Doke and Miura 1995 Lamb and Dixon 1997 Bolwell et al. 1998), which eventually dis-mutate into H202 and 02 (Sutherland 1991). Apoplastic peroxidases (Bolwell et al. 1998 Martinez et al. 1998), as well as various oxidases such as oxalate oxidase (Zhang et al. 1995 Thordal-Christensen et al. 1997) or amine oxidase (Laurenzi et al. 2001 Rea et al. 2002), have also been identified as sources of ROS in higher plants. [Pg.249]


See other pages where Di oxalate is mentioned: [Pg.1304]    [Pg.1304]    [Pg.355]    [Pg.1304]    [Pg.1304]    [Pg.355]    [Pg.164]    [Pg.192]    [Pg.404]    [Pg.804]    [Pg.299]    [Pg.459]    [Pg.393]    [Pg.111]    [Pg.804]    [Pg.109]    [Pg.78]    [Pg.79]    [Pg.123]    [Pg.122]    [Pg.157]    [Pg.1031]    [Pg.438]    [Pg.78]    [Pg.2]    [Pg.112]    [Pg.37]    [Pg.287]    [Pg.475]    [Pg.132]    [Pg.147]    [Pg.70]   
See also in sourсe #XX -- [ Pg.90 , Pg.92 ]




SEARCH



Di-n-butyl oxalate

Di-n-propyl oxalate

© 2024 chempedia.info