Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides lithium

Lithium Alkyl halide Alkane Alkylcopper Lithium... [Pg.610]

Zinc organometallics illustrate this methodology (see p. 347). Their one-step preparation from lithium, alkyl halides, and a zinc salt is easily accomplished. Alkyl, vinyl, or aryl reagents are obtained in short times and excellent yields. Sonication in a cleaning bath is sufficient to generate diarylzincs, but the probe technique is necessary in other cases, for unexplained reasons. A specific study in the cases of diheptyl and ditolyl zinc has shown that they are formed quantitatively with the proper technique in less than 30 min from the organic bromides, lithium and zinc bromide. [Pg.202]

Table 8 1 illustrates an application of each of these to a functional group transfer matron The anionic portion of the salt substitutes for the halogen of an alkyl halide The metal cation portion becomes a lithium sodium or potassium halide... [Pg.327]

The reaction of an alkyl halide with lithium is an oxidation-reduction reac tion Group I metals are powerful reducing agents... [Pg.589]

Unlike elimination and nucleophilic substitution reactions foimation of oigano lithium compounds does not require that the halogen be bonded to sp hybndized carbon Compounds such as vinyl halides and aiyl halides m which the halogen is bonded to sp hybndized carbon react m the same way as alkyl halides but at somewhat slowei rates... [Pg.590]

Reaction with an alkyl halide takes place at the metal surface In the hist step an election is transfeiied from lithium to the alkyl halide... [Pg.590]

Lithium dialkylcuprates react with alkyl halides to produce alkanes by carbon-carbon bond formation between the alkyl group of the alkyl halide and the alkyl group of the dialkylcuprate... [Pg.603]

Lithium diarylcuprates are prepared m the same way as lithium dialkylcuprates and undergo comparable reactions with primary alkyl halides... [Pg.603]

A key step in the reaction mechanism appears to be nucleophilic attack on the alkyl halide by the negatively charged copper atom but the details of the mechanism are not well understood Indeed there is probably more than one mechanism by which cuprates react with organic halogen compounds Vinyl halides and aryl halides are known to be very unreactive toward nucleophilic attack yet react with lithium dialkylcuprates... [Pg.604]

Preparation of alkanes using lithium di alkylcuprates (Section 14 11) Two alkyl groups may be coupled together to form an alkane by the reaction of an alkyl hal ide with a lithium dialkylcuprate Both alkyl groups must be primary (or meth yl) Aryl and vinyl halides may be used in place of alkyl halides... [Pg.617]

Lithium dialkylamides are excellent bases for making ketone enolates as well Ketone enolates generated m this way can be alkylated with alkyl halides or as illus trated m the following equation treated with an aldehyde or a ketone... [Pg.904]

Alkyl azides prepared by nucleophilic substitution of alkyl halides by sodium azide as shown m the first entry of Table 22 3 are reduced to alkylammes by a variety of reagents including lithium aluminum hydride... [Pg.931]

Alkyl azides prepared by nucleophilic substitution by azide ion in primary or secondary alkyl halides are reduced to primary alkylamines by lithium aluminum hydride or by catalytic hydrogenation... [Pg.957]

N-Alkylations, especially of oxo-di- and tetra-hydro derivatives, e.g. (28)->(29), have been carried out readily using a variety of reagents such as (usual) alkyl halide/alkali, alkyl sulfate/alkali, alkyl halide, tosylate or sulfate/NaH, trialkyloxonium fluoroborate and other Meerwein-type reagents, alcohols/DCCI, diazoalkanes, alkyl carbonates, oxalates or malon-ates, oxosulfonium ylides, DMF dimethyl acetal, and triethyl orthoformate/AcjO. Also used have been alkyl halide/lithium diisopropylamide and in one case benzyl chloride on the thallium derivative. In neutral conditions 8-alkylation is observed and preparation of some 8-nucleosides has also been reported (78JOC828, 77JOC997, 72JOC3975, 72JOC3980). [Pg.206]

Polymers containing 90-98% of a c 5-1,4-structure can be produced using Ziegler-Natta catalyst systems based on titanium, cobalt or nickel compounds in conjuction with reducing agents such as aluminium alkyls or alkyl halides. Useful rubbers may also be obtained by using lithium alkyl catalysts but in which the cis content is as low as 44%. [Pg.290]

One-electron oxidation of carboxylate ions generates acyloxy radicals, which undergo decarboxylation. Such electron-transfer reactions can be effected by strong one-electron oxidants, such as Mn(HI), Ag(II), Ce(IV), and Pb(IV) These metal ions are also capable of oxidizing the radical intermediate, so the products are those expected from carbocations. The oxidative decarboxylation by Pb(IV) in the presence of halide salts leads to alkyl halides. For example, oxidation of pentanoic acid with lead tetraacetate in the presence of lithium chloride gives 1-chlorobutane in 71% yield ... [Pg.726]

Lithium aluminum hydride (LiAlH4) is the most powerful of the hydride reagents. It reduces acid chlorides, esters, lactones, acids, anhydrides, aldehydes, ketones and epoxides to alcohols amides, nitriles, imines and oximes to amines primary and secondary alkyl halides and toluenesulfonates to... [Pg.61]

Weiss ° treated 16-dehydro- (6), 17a-acetoxy- (8), 17a-hydroxy- (9) and 17a-bromopregnan-20-one (11) with a solution of lithium, barium, calcium or sodium in liquid ammonia and reacted the intermediate enolate anion (7) with the appropriate alkyl halide. [Pg.98]

Most of the alkylations were carried out by adding a solution of 3,3-ethylenedioxypregna-5,16-dien-20-one in tetrahydrofuran to a solution of lithium in liquid ammonia to the point of color discharge. Treatment with the alkyl halide then furnishes the corresponding 17a-alkyl derivative (10). After hydrolysis of the 3-ketal group, 17a-methyl-, ethyl-, propyl-, butyl-, hexyl-, octyl-, allyl-, and benzylprogesterones are obtained. [Pg.98]

Organolithium compounds are sometimes prepared in hydrocarbon solvents such as pentane and hexane, but nonnally diethyl ether is used. It is especially important that the solvent be anhydrous. Even trace amounts of water or alcohols react with lithium to form insoluble lithium hydroxide or lithium alkoxides that coat the surface of the metal and prevent it from reacting with the alkyl halide. Furthennore, organolithium reagents are strong bases and react rapidly with even weak proton sources to fonn hydrocarbons. We shall discuss this property of organolithium reagents in Section 14.5. [Pg.590]

Alkyl halide Lithium Anion radical Lithium cation... [Pg.590]

Organolithium compounds can readily be prepared from metallic Li and this is one of the major uses of the metal. Because of the great reactivity both of the reactants and the products, air and moisture must be rigorously excluded by use of an inert atmosphere. Lithium can be reacted directly with alkyl halides in light petroleum, cyclohexane, benzene or ether, the chlorides generally being preferred ... [Pg.102]

Many other kinds of organometallic compounds can be prepared in a manner similar to that of Grignard reagents. For instance, alkyllithium reagents, RLi, can be prepared by the reaction of an alkyl halide with lithium metal. Alkyllithiums are both nucleophiles and strong bases, and their chemistry is similar in many respects to that of alkylmagnesium halides. [Pg.346]


See other pages where Alkyl halides lithium is mentioned: [Pg.620]    [Pg.620]    [Pg.91]    [Pg.9]    [Pg.36]    [Pg.590]    [Pg.590]    [Pg.604]    [Pg.887]    [Pg.434]    [Pg.604]    [Pg.103]    [Pg.102]    [Pg.105]    [Pg.124]    [Pg.330]   
See also in sourсe #XX -- [ Pg.795 ]

See also in sourсe #XX -- [ Pg.8 , Pg.795 ]

See also in sourсe #XX -- [ Pg.115 ]

See also in sourсe #XX -- [ Pg.8 , Pg.795 ]

See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Alkyl halides with lithium

Alkyl halides with lithium dialkylcuprates

Alkyl lithium

Alkylation lithium

Halides lithium

Halides, alkyl reaction with lithium

Lithium alkyl halide reduction

Lithium alkynides alkyl halides

Lithium aluminum hydride alkyl halide reduction

Lithium aluminum hydride alkyl halides

Lithium dialkylcopper with alkyl halides

Lithium triethylborohydride alkyl halides

Lithium, organo-, reagents alkyl halides

Lithium, vinylalkylation reaction with alkyl halides

© 2024 chempedia.info