Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density distillation

The density, distillation curve, viscosity, and behavior at low temperature make up the essential characteristics of diesei fuel necessary for satisfactory operation of the engine. [Pg.213]

Specifications for density, distillation curve and viscosity shown above are for products distributed in temperate climates. Other limits are required for arctic regions, particularly the Scandinavian countries. See Tables 5.13 and 5.14. [Pg.214]

The products could be classified as a function of various criteria physical properties (in particular, volatility), the way they are created (primary distillation or conversion). Nevertheless, the classification most relevant to this discussion is linked to the end product use LPG, premium gasoline, kerosene and diesel oil, medium and heavy fuels, specialty products like solvents, lubricants, and asphalts. Indeed, the product specifications are generally related to the end use. Traditionally, they have to do with specific properties octane number for premium gasoline, cetane number for diesel oil as well as overall physical properties such as density, distillation curves and viscosity. [Pg.483]

Due to the tremendous complexity of heavy petroleum fractions, lumping is used to formulate reaction kinetics for conversion units. The simplest schemes treat the feed as a single entity, assume first-order kinetics and use empirical correlations to adjust for product objectives and feed properties, such as density, distillation, sulfur, nitrogen, olefins, and CCR. These models may seem austere, but they have been used for the design of commercial units since the early 1960s. [Pg.192]

Another method is to try and estimate the composition of the reactors based only on bulk property information. This bulk property information typically refers to routinely measured properties such density, distillation curves, etc. Klein and co-workers [29] have used a much more sophisticated version of this approach to probabilistically sample candidate molecules and generate a very large list of molecules whose combined properties match the measured bulk properties. Hu et al. [24] use a probabibty distribution method to estimate to the PN A compositions for their approach towards refinery reactor modeling. The approach we describe is similar, but much simpler to use since it is targeted only for reformer feeds. [Pg.276]

Figure 5.54 shows the Feed Data tab from the Reformer sub-model. The Feed Type is a basic set of relationships and initial values for the all kinetic lumps in the reactor model. Aspen HYSYS uses bulk property information such as density, distillation curves and total PNA content in conjunction with the feed type to predict the composition of feed lumps to the model. The Default type is sufficient for hght-to-heavy naphtha. However, there is no guarantee that a particular feed type represents the actual feed accurately. Aspen HYSYS will attempt to manipulate the feed composition to satisfy bulk property measures given. In general, we advise users to develop a few sets of compositional analysis to verify the kinetics lumps calculated by Aspen HYSYS. We discuss a process to verify these lumps later. [Pg.320]

Feed oil (density, distillation curve, total sulfur, total nitrogen and basic nitrogen)... [Pg.380]

All liquid products from fractionator (density, distillation, element analysis - C, H, S, N)... [Pg.380]

The density and the volatility, expressed by the distillation curve and the vapor pressure, constitute the most important physical characteristics of motor fuels for obtaining satisfactory operation of a vehicle in all circumstances. [Pg.187]

For optimum combustion, the fuel should vaporize rapidly and mix intimately with the air. Even though the design of the injection system and combustion chamber play a very important role, properties such as volatility, surface tension, and fuel viscosity also affect the quality of atomization and penetration of the fuel. These considerations justify setting specifications for the density (between 0.775 and 0.840 kg/1), the distillation curve (greater than 10% distilled at 204°C, end point less than 288°C) and the kinematic viscosity (less than 8 mm /s at -20°C). [Pg.226]

Composition is normally expressed by a distillation curve, and can be supplemented by compositional analyses such as those for aromatics content. Some physical properties such as density or vapor pressure are often added. The degree of purity is indicated by color or other appropriate test (copper strip corrosion, for example). [Pg.275]

Cetane index ASTM D 4737 ISO 4264 Correlation between density and distillation... [Pg.446]

In molecular distillation, the permanent gas pressure is so low (less than 0 001 mm. of mercury) that it has very little influence upon the speed of the distillation. The distillation velocity at such low pressures is determined by the speed at which the vapour from the liquid being distilled can flow through the enclosed space connecting the still and condenser under the driving force of its own saturation pressure. If the distance from the surface of the evaporating liquid to the condenser is less than (or of the order of) the mean free path of a molecule of distillate vapour in the residual gas at the same density and pressure, most of the molecules which leave the surface will not return. The mean free path of air at various pressures is as follows —... [Pg.120]

Bromopentane. Proceed as for n-Amyl Bromide, but use 88 g. (108 ml.) of methyl n-propyl carbinol (2-pentanol), b.p. 118-5°. During the washing with concentrated hydrochloric acid, difficulty may be experienced in separating the acid layer this is overcome by adding a little water to decrease the density of the acid. Distil the purified product through a fractionating colunm some amylene passes over first, followed by the 2-bromopentane at 115-118° (120 g.). [Pg.279]

Mix 31 g. (29-5 ml.) of benzyl alcohol (Section IV, 123 and Section IV,200) and 45 g. (43 ml.) of glacial acetic acid in a 500 ml. round-bottomed flask introduce 1 ml. of concentrated sulphuric acid and a few fragments of porous pot. Attach a reflux condenser to the flask and boil the mixture gently for 9 hours. Pour the reaction mixture into about 200 ml. of water contained in a separatory funnel, add 10 ml. of carbon tetrachloride (to eliminate emulsion formation owing to the slight difference in density of the ester and water, compare Methyl Benzoate, Section IV,176) and shake. Separate the lower layer (solution of benzyl acetate in carbon tetrachloride) and discard the upper aqueous layer. Return the lower layer to the funnel, and wash it successively with water, concentrated sodium bicarbonate solution (until effervescence ceases) and water. Dry over 5 g. of anhydrous magnesium sulphate, and distil under normal pressure (Fig. II, 13, 2) with the aid of an air bath (Fig. II, 5, 3). Collect the benzyl acetate a (colourless liquid) at 213-215°. The yield is 16 g. [Pg.783]

Determination of the physical constants and the establishment of the purity of the compound. For a solid, the melting point is of great importance if recrystalhsation does not alter it, the compound may be regarded as pure. For a hquid, the boiling point is first determined if most of it distils over a narrow range (say, 1-2°), it is reasonably pure. (Constant boUing point mixtures, compare Section 1,4, are, however known.) The refractive index and the density, from which the molecular refractivity may be calculated, are also valuable constants for liquids. [Pg.1027]

The density determination may be carried out at the temperature of the laboratory. The liquid should stand for at least one hour and a thermometer placed either in the liquid (if practicable) or in its immediate vicinity. It is usually better to conduct the measurement at a temperature of 20° or 25° throughout this volume a standard temperature of 20° will be adopted. To determine the density of a liquid at 20°, a clean, corked test-tube containing about 5 ml. of toe liquid is immersed for about three-quarters of its length in a water thermostat at 20° for about 2 hours. An empty test-tube and a shallow beaker (e.g., a Baco beaker) are also supported in the thermostat so that only the rims protrude above the surface of the water the pycnometer is supported by its capillary arms on the rim of the test-tube, and the small crucible is placed in the beaker, which is covered with a clock glass. When the liquid has acquired the temperature of the thermostat, the small crucible is removed, charged with the liquid, the pycnometer rapidly filled and adjusted to the mark. With practice, the whole operation can be completed in about half a minute. The error introduced if the temperature of the laboratory differs by as much as 10° from that of the thermostat does not exceed 1 mg. if the temperature of the laboratory is adjusted so that it does not differ by more than 1-2° from 20°, the error is negligible. The weight of the empty pycnometer and also filled with distilled (preferably conductivity) water at 20° should also be determined. The density of the liquid can then be computed. [Pg.1030]

When dealing with esters of water-soluble, non steam-volatile, poly-hydric alcohols e.g., ethylene glycol or glycerol), the distillate consists of water only (density 1 00). The water soluble, non-volatile alcohol may be isolated by evaporation of the alkahne solution to a thick syrup on a water bath and extraction of the polyhydric alcohol from the salt with cold ethyl alcohol. [Pg.1064]

Separations based upon differences in the physical properties of the components. When procedures (1) or (2) are unsatisfactory for the separation of a mixture of organic compounds, purely physical methods may be employed. Thus a mixture of volatile liquids may be fractionally distilled (compare Sections 11,15 and 11,17) the degree of separation may be determined by the range of boiling points and/or the refractive indices and densities of the different fractions that are collected. A mixture of non-volatile sohds may frequently be separated by making use of the differences in solubilities in inert solvents the separation is usually controlled by m.p. determinations. Sometimes one of the components of the mixture is volatile and can be separated by sublimation (see Section 11,45). [Pg.1092]

The distillate may contain volatile neutral compounds as well as volatile acids and phenols. Add a slight excess of 10-20 per cent, sodium hydroxide solution to this distillate and distil until the liquid passes over clear or has the density of pure water. The presence of a volatile, water-soluble neutral compound is detected by a periodic determination of the density (see Section XI,2) if the density is definitely less than unity, the presence of a neutral compound may be assumed. Keep this solution Si) for Step 4. [Pg.1098]

Step 4. The steam-volatile neutral compounds. The solution (containing water-soluble neutral compounds obtained in Step 1 is usually very dilute. It is advisable to concentrate it by distillation until about one-third to one-half of the original volume is collected as distillate the process may be repeated if necessary and the progress of the concentration may be followed by determination of the densities of the distillates. It is frequently possible to salt out the neutral components from the concentrated distillate by saturating it with solid potassium carbonate. If a layer of neutral compound makes its appearance, remove it. Treat this upper layer (which usually contains much water) with solid anhydrous potassium carbonate if another aqueous layer forms, separate the upper organic layer and add more anhydrous potassium carbonate to it. Identify the neutral compound. [Pg.1099]

When the analytical method s selectivity is insufficient, it may be necessary to separate the analyte from potential interferents. Such separations can take advantage of physical properties, such as size, mass or density, or chemical properties. Important examples of chemical separations include masking, distillation, and extractions. [Pg.224]

The vapor density of acetic acid suggests a molecular weight much higher than the formula weight, 60.06. Indeed, the acid normally exists as a dimer (4), both in the vapor phase (5) and in solution (6). This vapor density anomaly has important consequences in engineering computations, particularly in distillations. [Pg.64]

The ethyl acetate is distilled at 70—100°C, leaving spherical particles. This graining operation requires ca 1 to 1.5 h. Grain density and size are determined by the concentration of salt in solution, the temperature and time of the dehydration, agitation speed, and the rate of distillation of the ethyl acetate. [Pg.46]

Formex pro-cess, Snam-progetti /V-formyl-morph o-line (FM) water is added to the FM to increase its se-lectivity and also to avoid high reboiler temperatures during solvent recovery by distillation 40 perforated-tray ex-tractor, FM density at 1.15 aids phase separation low corrosion allows use of carbon steel equipment... [Pg.78]

Monofluorophosphoric Acid. Monofluorophosphoric acid (1) is a colorless, nonvolatile, viscous Hquid having practically no odor. On cooling it does not crystallize but sets to a rigid glass at —78°C. It has a density of = 1.818 g/mL. Little decomposition occurs up to 185°C under vacuum but it caimot be distilled. An aqueous solution shows the normal behavior of a dibasic acid the first neutralization point in 0.05 N solution is at pH 3.5 and the second at pH 8.5. Conductance measurements, however, indicate H2PO2F behaves as a monobasic acid in aqueous solution (59). The... [Pg.225]


See other pages where Density distillation is mentioned: [Pg.177]    [Pg.169]    [Pg.93]    [Pg.177]    [Pg.169]    [Pg.93]    [Pg.328]    [Pg.239]    [Pg.7]    [Pg.121]    [Pg.142]    [Pg.178]    [Pg.179]    [Pg.460]    [Pg.781]    [Pg.366]    [Pg.6]    [Pg.65]    [Pg.20]    [Pg.78]    [Pg.397]    [Pg.85]   
See also in sourсe #XX -- [ Pg.260 , Pg.262 , Pg.286 ]




SEARCH



© 2024 chempedia.info