Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Commodity plastics Polyethylene

Thermoplastics, in particular the commodity plastics, polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC) and polystyrene (PS), are the most commonly used in packaging (over 90% of packaging is thermoplastics, followed by a small amount of thermosets, composites, rubber and thermoplastic elastomers (TPE). [Pg.112]

Ethanol, categorized as a supercommodity, can be converted to olefins such as ethylene for the production of the commodity plastic polyethylene, which provides a direct interface between the biorefinery and the conversion infrastructure of the petrochemical industry. The Braskem company has established the product line for biopolyethylene production. [Pg.217]

Omitting the construction and demolition debris from the calculations, the composition (by volume this time) is as follows paper and paperboard 50%, plastics 14%, metals 12%, glass 4%, organics 6%, and miscellaneous 14%. All plastic packaging (post-consumer, industrial, commercial, and institutional) represented about 8% of the overall refuse. It is a reasonable assumption that the composition of plastics discarded in landfills is a reflection of the quantities produced for packaging applications the commodity plastics polyethylene, polypropylene, polystyrene, and poly(vinyl chloride) should be well represented (see Ethylene POLYMERS PROPYLENE Polymers (PP) Styrene Polymers Vinyl Chloride Polymers). [Pg.2084]

Polyethylene (PE) is a genetic name for a large family of semicrystalline polymers used mostiy as commodity plastics. PE resins are linear polymers with ethylene molecules as the main building block they are produced either in radical polymerization reactions at high pressures or in catalytic polymerization reactions. Most PE molecules contain branches in thek chains. In very general terms, PE stmcture can be represented by the following formula ... [Pg.367]

High density polyethylene (HDPE) is defined by ASTM D1248-84 as a product of ethylene polymerisation with a density of 0.940 g/cm or higher. This range includes both homopolymers of ethylene and its copolymers with small amounts of a-olefins. The first commercial processes for HDPE manufacture were developed in the early 1950s and utilised a variety of transition-metal polymerisation catalysts based on molybdenum (1), chromium (2,3), and titanium (4). Commercial production of HDPE was started in 1956 in the United States by Phillips Petroleum Company and in Europe by Hoechst (5). HDPE is one of the largest volume commodity plastics produced in the world, with a worldwide capacity in 1994 of over 14 x 10 t/yr and a 32% share of the total polyethylene production. [Pg.379]

Over 70% of the total volume of thermoplastics is accounted for by the commodity resins polyethylene, polypropylene, polystyrene, and poly(vinyl chloride) (PVC) (1) (see Olefin polymers Styrene plastics Vinyl polymers). They are made in a variety of grades and because of their low cost are the first choice for a variety of appHcations. Next in performance and in cost are acryhcs, ceUulosics, and acrylonitrile—butadiene—styrene (ABS) terpolymers (see... [Pg.135]

We can divide commodity plastics into two classes excellent and moderate insulators. Polymers that have negligible polar character, typically those containing only carbon-carbon and carbon-hydrogen bonds, fall into the first class. This group includes polyethylene, polypropylene, and polystyrene. Polymers made from polar monomers are typically modest insulators, due to the interaction of their dipoles with electrical fields. We can further divide moderate insulators into those that have dipoles that involve backbone atoms, such as polyvinyl chloride and polyamides, and those with polar bonds remote from the backbone, such as poly(methyl methacrylate) and poly(vinyl acetate). Dipoles involving backbone atoms are less susceptible to alignment with an electrical field than those remote from the backbone. [Pg.181]

The second section deals with the degradability of commodity plastics and specialty potymers. Emphasis is on the biodegradation of polyethylene, its blends with starch, and constraints in the decay of such composites. Additionally, the biodegradability of different functional groups (polyethers, carbotylic adds, esters, and dioxanones) is mcamined with respect to composition and miaostructure. [Pg.1]

A second approach to biodegradable packaging is to blend polyethylene with a second synthetic polymer with polar repeating units that are capable of degradation, such as ester linkages (chapter 12). Poly(caprolactone) represents such a class of polymer, which has a long history of compatibility ( with a variety of polymers and degradability (5) recently, improved miscibility and Glm properties have been reported when poly(caprolactone) is blended with commodity plastics... [Pg.54]

Thermoplastic Polymers. Most thermoplastic polymers are used in high-volume, widely recognized applications, so they are often referred to as commodity plastics. (We will elaborate upon the distinction between a polymer and a plastic in Chapter 7, but for now we simply note that a plastic is a polymer that contains other additives and is usually identified by a variety of commercial trade names. There are numerous databases, both in books [1] and on the Internet [2], that can be used to identify the primary polymer components of most plastics. With a few notable exceptions, we will refer to most polymers by their generic chemical name.) The most common commodity thermoplastics are polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS). These thermoplastics all have in common the general repeat unit -(CHX-CH2)-, where -X is -H for PE, -CH3 for PP, -Cl for PVC, and a benzene ring for PS. When we discuss polymerization reactions in Chapter 3, we will see that all of these thermoplastics can be produced by the same type of reaction. [Pg.80]

Barrier Plastics. When plastics replace metals and glass in packaging, their permeability is often a limiting property. Barrier performance generally increases with density and crystallinity. The most promising barrier plastics include ethylene/vinyl alcohol, polyvinylidene chloride, polyacrylonitrile, and polyethylene naphthoate. These are used most efficiently by laminating them to commodity plastics such as polyethylene and polyethylene terephthalate. [Pg.653]

Commodity and engineering polymers. On the basis of end use and economic considerations, polymers can be divided into two major classes commodity plastics and engineering polymers. Commodity plastics are characterized by high volume and low cost. They are used frequently in the form of disposable items such as packaging film, but also find application in durable goods. Commodity plastics comprise principally of four major thermoplastic polymers polystyrene, polyethylene, polypropylene, and poly(vinyl chloride). [Pg.518]

Thermoplastics may be further subdivided into two broad categories on the basis of their cost and suitable end uses. Commodity plastics are typified by high volume production, good properties, and low resin cost. The four major commodity plastics are polyethylene, polypropylene, poly(vinyl chloride), and polystyrene. Their adequate properties and low cost have led to the extensive use of these plastics in packaging applications where they are very competitive with paper, steel, and glass. They are also used for some less demanding applications as components of durable goods (Table 22.1). [Pg.713]

Plastics are not, as many people believe, new materials. Their origin can be traced to 1847 when Shonbein produced the first thermoplastic resin, celluloid, by reaction of cellulose with nitric acid. However, the general acceptance and commercialization of plastics began during the Second World War when natural polymers, such as natural rubber, were in short supply. Thus, polystyrene was developed in 1937, low density polyethylene in 1941, whereas other commodity plastics such as high density polyethylene and polypropylene were introduced in 1957. [Pg.2]

Polyethylene is a major commodity plastic, with more than 33 billion pounds of the resin produced in the United States in 2000 [1]. Polyethylene encompasses a family of semi crystalline polymers with ethylene as the major building block [6]. The resins are loosely grouped into three classes low-density polyethylene (LDPE), high-density polyethylene (HD.PE), and linear-low-density polyethylene (LLDPE). LDPE is a homopoiymer of ethylene with side-chain branching at a frequency... [Pg.340]

Despite its origin form the nature, PLA s good stiffness and strength has enabled it to compete with other existing chemically based commodity plastics. Previous study on the mechanical properties of neat PLA by Jacobsen et al. [1] showed that PLA has great potential to be a substitute polymer for petroleum based plastics. The respective values of mechanical properties of PLA [2] with comparison of other petroleum based plastics e.g. polypropylene (PP) [3], polystyrene (PS) [4], high density polyethylene (HOPE) [5], polyamide (PA6) [6] shown in Fig. 11.2. [Pg.363]

Polyethylenes and polypropylene are bulk commodity plastics but a precondition of numerous industrial and consumers applications is a considerable improvement in their flammability characteristics. ... [Pg.387]

Polyethylene and polypropylene are ubiquitous commodity plastics found in applications varying from household items such as grocery bags, containers, toys and appliance housings, to high-tech products such as engineering plastics, automotive parts, medical appliances and even prosthetic implants. They can be either amorphous or highly crystalline, and behave as thermoplastics, thermoplastic elastomers or thermosets. [Pg.29]

In summary, the apparent simphdty of your everyday polyethylene and polypropylene consumer goods is deceptive. Few industrial polymers can claim such richness in catalyst types, reactor configurations and microstructural complexity. In this chapter, we will explain how, from such simple monomers, polyolefins have become the dominant commodity plastic in the 21st century. [Pg.30]


See other pages where Commodity plastics Polyethylene is mentioned: [Pg.27]    [Pg.27]    [Pg.277]    [Pg.175]    [Pg.82]    [Pg.1142]    [Pg.640]    [Pg.40]    [Pg.623]    [Pg.633]    [Pg.3]    [Pg.19]    [Pg.59]    [Pg.93]    [Pg.21]    [Pg.46]    [Pg.130]    [Pg.3]    [Pg.80]    [Pg.14]    [Pg.257]    [Pg.163]    [Pg.247]    [Pg.82]    [Pg.256]    [Pg.56]    [Pg.82]    [Pg.83]    [Pg.3]    [Pg.276]    [Pg.11]   


SEARCH



Commodity

Polyethylene plastic

Polyethylene plasticization

© 2024 chempedia.info