Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Commercial products, controlled

Synthesis Control will be needed in the condensation as the ketone C is more reacfiye than the acid D both in enolisation and electrophilic power. The Reformatsky looks a good method. Again we don t know how this commercial product is actually made ... [Pg.35]

A. E. Broderick (Union Carbide). HEC did not become a viable commercial product until the early 1960s. In addition to the general production problems and market development costs, new products face a variety of environmental controls in the 1990s that add more constraints to market development. None the less two more recentiy developed water-soluble polymers have achieved limited market acceptance and are described below. [Pg.320]

Manufacture. For the commercial production of DPXN (di-/)-xylylene) (3), two principal synthetic routes have been used the direct pyrolysis of -xylene (4, X = Y = H) and the 1,6-Hofmaim elimination of ammonium (HNR3 ) from a quaternary ammonium hydroxide (4, X = H, Y = NR3 ). Most of the routes to DPX share a common strategy PX is generated at a controlled rate in a dilute medium, so that its conversion to dimer is favored over the conversion to polymer. The polymer by-product is of no value because it can neither be recycled nor processed into a commercially useful form. Its formation is minimised by careful attention to process engineering. The chemistry of the direct pyrolysis route is shown in equation 1 ... [Pg.430]

Octabromodiphenyl Oxide. Octabromodiphenyl oxide [32536-52-0] (OBDPO) is prepared by bromination of diphenyl oxide. The degree of bromination is controlled either through stoichiometry (34) or through control of the reaction kinetics (35). The melting poiat and the composition of the commercial products vary somewhat. OBDPO is used primarily ia ABS resias where it offers a good balance of physical properties. Poor uv stabiUty is the primary drawback and use ia ABS is being supplanted by other brominated flame retardants, primarily TBBPA. [Pg.468]

The latest government regulations set forth under the Toxic Substances Control Act and in PubHc Health Service pubHcations should be checked before formulating new lubricants. Users of lubricants should request Material Safety Data Sheets for each substance involved plus certification of compliance from vendors. Lubricant compounders should insist on similar information from their suppHers for any additive packages. Manufacturers of both additives and lubricants commonly make toxicity checks on commercial products. [Pg.256]

The main use of these clays is to control, or adjust, viscosity in nonaqueous systems. Organoclays can be dispersed in nonaqueous fluids to modify the viscosity of the fluid so that the fluid exhibits non-Newtonian thixotropic behavior. Important segments of this area are drilling fluids, greases (79,80), lubricants, and oil-based paints. The most used commercial products in this area are dimethyl di (hydrogen a ted tallow) alkylammonium chloride [61789-80-8] dimethyl (hydrogen a ted tallow)aLkylbenzylammonium chloride [61789-72-8] and methyldi(hydrogenated tallow)aLkylbenzylammonium chloride [68391-01-5]. [Pg.383]

Polyolefins. The most common polyolefin used to prepare composites is polypropylene [9003-07-0] a commodity polymer that has been in commercial production for almost 40 years following its controlled polymerisation by Natta in 1954 (5). Natta used a Ziegler catalyst (6) consisting of titanium tetrachloride and an aluminum alkyl to produce isotactic polypropylene directly from propylene ... [Pg.36]

Kinetics can also be applied to the optimization of process conditions, as in organic syntheses, analytical reactions, and chemical manufacturing. This last example constitutes an important aspect of chemical engineering. Yet another practical use of chemical kinetics is for the determination and control of the stability of commercial products such as pharmaceutical dosage forms, foods, paints, and metals. [Pg.2]

Since TPU is much more expensive than PVC, and its quality is usually not as stable as that of PVC, especially when TPU is synthesized instead of a commercial product, the quality inspection of TPU must be done under strict control. One thing that needs to be paid attention to is the water content of TPU. TPUs with higher than allowed amounts of water must be preheated to remove the bulk of the water. [Pg.142]

Phenol-formaldehyde resins are the oldest thermosetting polymers. They are produced by a condensation reaction between phenol and formaldehyde. Although many attempts were made to use the product and control the conditions for the acid-catalyzed reaction described by Bayer in 1872, there was no commercial production of the resin until the exhaustive work by Baekeland was published in 1909. In this paper, he describes the product as far superior to amber for pipe stem and similar articles, less flexible but more durable than celluloid, odorless, and fire-resistant. ° The reaction between phenol and formaldehyde is either base or acid catalyzed, and the polymers are termed resols (for the base catalyzed) and novalacs (for the acid catalyzed). [Pg.346]

Knowledge of chemical principles pays rewards in technological progress. Control of chemical reactions is the key. The large scale commercial production of nitrogen compounds provides a practical example of the beneficial application of Le Chatelier s Principle. [Pg.150]

In an article dealing with applications of olefin CM to a series of commercial products [138], solvent-free CM between ( )-3-hexene (produced by homocoupling of 1-butene) and 11-eicosenyl acetate 303 (produced from jojoba oil) was used to produce acetate 304 (Scheme 59), which is - as a natural 82 18 (EIZ) mixture - the pheromone of omnivorous leafroller, and serves as an environment-friendly pest controlling agent. The CM reaction was performed without solvent at 5 °C with a 4 1 mixture of ( )-3-hexene and 303, in the presence of only 0.2 mol% catalyst C, and furnished after 20 h coupling product 304 ( Z=83 17) in 50% yield. [Pg.331]

Off-the-shelf catalogue sales of micro reactors have just started [15]. With an increasing number of commercial products, quality control will become more important. Brandner et al. describe quality control for micro heat exchangers/reactors at the Forschungszentrum Karlsruhe [23]. All manufacturing steps are accompanied by quality control and documentation. Leak rates (down to 10 mbar 1 s for He) and overpressure resistance (up to 1000 bar at ambient temperature) are measured. Under standardized conditions, the mean hydraulic diameter is determined. Dynamic tests supplement this quality control. [Pg.96]

This is the first example of a reaction for which the presence of a chelating ligand was observed to facilitate rather than retard metal-catalysed epoxidation (Gao et al., 1987). It was found that the use of molecular sieves greatly improves this process by removing minute amounts of water present in the reaction medium. Water was found to deactivate the catalyst. All these developments led to an improved catalytic version that allows a five-fold increased substrate concentration relative to the stoichiometric method. Sensitive water-soluble, optically active glycidols can be prepared in an efficient manner by an in situ derivatisation. This epoxidation method appears to be competitive with enzyme-catalysed processes and was applied in 1981 for the commercial production of the gypsy moth pheromone, (-1-) disparlure, used for insect control (Eqn. (25)). [Pg.178]

Commercial products are listed in the literature. These include bactericides, corrosion inhibitors, defoamers, emulsifiers, fluid loss and viscosity control agents, and shale control additives [58-61,65]. [Pg.4]

In Denmark, a similar system is used by Milj0-Kemi for commercial production of quality control samples for a number of different solvents and some inorganic gases see Table 6.1. [Pg.197]


See other pages where Commercial products, controlled is mentioned: [Pg.321]    [Pg.117]    [Pg.278]    [Pg.279]    [Pg.286]    [Pg.365]    [Pg.55]    [Pg.68]    [Pg.288]    [Pg.407]    [Pg.448]    [Pg.410]    [Pg.424]    [Pg.423]    [Pg.140]    [Pg.368]    [Pg.32]    [Pg.60]    [Pg.230]    [Pg.384]    [Pg.238]    [Pg.447]    [Pg.457]    [Pg.328]    [Pg.52]    [Pg.143]    [Pg.5]    [Pg.56]    [Pg.225]    [Pg.11]    [Pg.313]    [Pg.87]    [Pg.409]    [Pg.386]   


SEARCH



Commercial production commercialization

Commercial products

Commercial products, controlled radical polymerization

Commercialized products

Control of Nonconforming Commercial Product

Controlled/living radical commercial products

Product commercialization

Product control

Product controlling

Production controls

© 2024 chempedia.info