Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerisation control

Stop the addition of reactant when 1500 kg have been added. Continue the polymerisation, controlling ithe temperature at 80°C for a further 30 minutes. Over this time, the control i system will change from cooling to heating mode as the reaction nears completion. [Pg.18]

Destarac [5] polymerized 4-vinylbenzeneboronic acid using 0-ethyl -(l-methoxycarbonyl)-ethyl xanthate, (V), as the free radical polymerisation controlling agent. [Pg.609]

Figure 5 Comparison of conventional free-radical polymerisation, controlled living free-radical polymerisation and the middle ground of statistical I pragmatic modification... Figure 5 Comparison of conventional free-radical polymerisation, controlled living free-radical polymerisation and the middle ground of statistical I pragmatic modification...
In a suspension polymerisation monomer is suspended in water as 0.1—5-mm droplets, stabilised by protective coUoids or suspending agents. Polymerisation is initiated by a monomer-soluble initiator and takes place within the monomer droplets. The water serves as both the dispersion medium and a heat-transfer agent. Particle sise is controlled primarily by the rate of agitation and the concentration and type of suspending aids. The polymer is obtained as small beads about 0.1—5 mm in diameter, which are isolated by filtration or centrifugation. [Pg.169]

The bulk polycondensation of (10) is normally carried out in evacuated, sealed vessels such as glass ampules or stainless steel Parr reactors, at temperatures between 160 and 220°C for 2—12 d (67). Two monomers with different substituents on each can be cocondensed to yield random copolymers. The by-product sdyl ether is readily removed under reduced pressure, and the polymer purified by precipitation from appropriate solvents. Catalysis of the polycondensation of (10) by phenoxide ion in particular, as well as by other species, has been reported to bring about complete polymerisation in 24—48 h at 150°C (68). Catalysis of the polycondensation of phosphoranimines that are similar to (10), but which yield P—O-substituted polymers (1), has also been described and appears promising for the synthesis of (1) with controlled stmctures (69,70). [Pg.259]

The ionic nature of the radicals generated, by whatever technique, can contribute to the stabilisation of latex particles. Soapless emulsion polymerisations can be carried out usiag potassium persulfate as initiator (62). It is often important to control pH with buffets dutiag soapless emulsion p olymerisation. [Pg.26]

Cha.in-Tra.nsferAgents. The most commonly employed chain-transfer agents ia emulsion polymerisation are mercaptans, disulfides, carbon tetrabromide, and carbon tetrachloride. They are added to control the molecular weight of a polymer, by transferring a propagating radical to the chain transfer agent AX (63) ... [Pg.26]

A weU-known feature of olefin polymerisation with Ziegler-Natta catalysts is the repHcation phenomenon ia which the growing polymer particle mimics the shape of the catalyst (101). This phenomenon allows morphological control of the polymer particle, particularly sise, shape, sise distribution, and compactness, which greatiy influences the polymerisation processes (102). In one example, the polymer particle has the same spherical shape as the catalyst particle, but with a diameter approximately 40 times larger (96). [Pg.413]

With appropriately substituted oxetanes, aluminum-based initiators (321) impose a degree of microstmctural control on the substituted polyoxetane stmcture that is not obtainable with a pure cationic system. A polymer having largely the stmcture of poly(3-hydroxyoxetane) has been obtained from an anionic rearrangement polymerisation of glycidol or its trimethylsilyl ether, both oxirane monomers (322). Polymerisation-induced epitaxy can produce ultrathin films of highly oriented POX molecules on, for instance, graphite (323). Theoretical studies on the cationic polymerisation mechanism of oxetanes have been made (324—326). [Pg.369]

Silicone Fluids. Sihcone fluids are used in a wide variety of appHcations, including damping fluids, dielectric fluids, poHshes, cosmetic and personal care additives, textile finishes, hydraiflic fluids, paint additives, and heat-transfer oils. Polydimethylsiloxane oils are manufactured by the equihbrium polymerisation of cycHc or linear dimethyl silicone precursors. Trifunctional organosilane end groups, typically trimethylsilyl (M), are used, and the ratio of end group to chain units (D), ie, M/D, controls the ultimate average molecular weight and viscosity (112). Low viscosity fluids,... [Pg.50]

Eree-radical initiation of emulsion copolymers produces a random polymerisation in which the trans/cis ratio caimot be controlled. The nature of ESBR free-radical polymerisation results in the polymer being heterogeneous, with a broad molecular weight distribution and random copolymer composition. The microstmcture is not amenable to manipulation, although the temperature of the polymerisation affects the ratio of trans to cis somewhat. [Pg.495]

In solution-based polymerisation, use of the initiating anionic species allows control over the trans /cis microstmcture of the diene portion of the copolymer. In solution SBR, the alkyUithium catalyst allows the 1,2 content to be changed with certain modifying agents such as ethers or amines. The use of anionic initiators to control the molecular weight, molecular weight distribution, and the microstmcture of the copolymer has been reviewed (15). [Pg.495]

Polyolefins. The most common polyolefin used to prepare composites is polypropylene [9003-07-0] a commodity polymer that has been in commercial production for almost 40 years following its controlled polymerisation by Natta in 1954 (5). Natta used a Ziegler catalyst (6) consisting of titanium tetrachloride and an aluminum alkyl to produce isotactic polypropylene directly from propylene ... [Pg.36]

The process for manufacture of a chloroprene sulfur copolymer, Du Pont type GN, illustrates the principles of the batch process (77,78). In this case, sulfur is used to control polymer molecular weight. The copolymer formed initially is carried to fairly high conversion, gelled, and must be treated with a peptising agent to provide a final product of the proper viscosity. Key control parameters are the temperature of polymerisation, the conversion of monomer and the amount/type of modifier used. [Pg.541]


See other pages where Polymerisation control is mentioned: [Pg.336]    [Pg.171]    [Pg.135]    [Pg.243]    [Pg.87]    [Pg.102]    [Pg.336]    [Pg.171]    [Pg.135]    [Pg.243]    [Pg.87]    [Pg.102]    [Pg.55]    [Pg.58]    [Pg.124]    [Pg.380]    [Pg.26]    [Pg.430]    [Pg.338]    [Pg.219]    [Pg.352]    [Pg.421]    [Pg.422]    [Pg.358]    [Pg.472]    [Pg.50]    [Pg.497]    [Pg.498]    [Pg.522]    [Pg.444]    [Pg.466]    [Pg.483]    [Pg.327]    [Pg.37]    [Pg.104]    [Pg.520]    [Pg.533]    [Pg.539]    [Pg.539]    [Pg.273]    [Pg.438]    [Pg.17]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Controlled feed polymerisations

Controlled polymerisation

Controlled radical polymerisation

Controlled-radical Polymerisation Techniques

Controlled/living polymerisation

Controlled/living radical polymerisation

Nitroxide mediated living/controlled radical polymerisations

© 2024 chempedia.info