Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic continuous processes

Continuous processes have been developed for the alcohols, operating under pressure with Hquid ammonia as solvent. Potassium hydroxide (206) or anion exchange resins (207) are suitable catalysts. However, the relatively small manufacturing volumes militate against continuous production. For a while a continuous catalytic plant operated in Raveima, Italy, designed to produce about 40,000 t/yr of methylbutynol for conversion to isoprene (208,209). [Pg.114]

The most dominant catalytic process in the United States is the fluid catalytic cracking process. In this process, partially vaporized medium-cut petroleum fractions called gas oils are brought in contact with a hot, moving, freshly regenerated catalyst stream for a short period of time at process conditions noted above. Spent catalyst moves continuously into a regenerator where deposited coke on the catalyst is burnt off. The hot, freshly regenerated catalyst moves back to the reactor to contact the hot gas oil (see Catalysts, regeneration). [Pg.367]

Ethylamines. Mono-, di-, and triethylamines, produced by catalytic reaction of ethanol with ammonia (330), are a significant outlet for ethanol. The vapor-phase continuous process takes place at 1.38 MPa (13.6 atm) and 150—220°C over a nickel catalyst supported on alumina, siUca, or sihca—alumina. In this reductive amination under a hydrogen atmosphere, the ratio of the mono-, di-, and triethylamine product can be controlled by recycling the unwanted products. Other catalysts used include phosphoric acid and derivatives, copper and iron chlorides, sulfates, and oxides in the presence of acids or alkaline salts (331). Piperidine can be ethylated with ethanol in the presence of Raney nickel catalyst at 200°C and 10.3 MPa (102 atm), to give W-ethylpiperidine [766-09-6] (332). [Pg.415]

The catalytic cracking processes, as well as most other refinery catalytic processes, produce coke which collects on the catalyst surface and diminishes its catalytic properties. The catalyst, therefore, needs to be regenerated continuously or periodically essentially by burning the coke off the catalyst at high temperatures. [Pg.88]

Ornithine decarboxylase is a pyridoxal dependent enzyme. In its catalytic cycle, it normally converts ornithine (7) to putrisine by decarboxylation. If it starts the process with eflornithine instead, the key imine anion (11) produced by decarboxylation can either alkylate the enzyme directly by displacement of either fluorine atom or it can eject a fluorine atom to produce viny-logue 12 which can alkylate the enzyme by conjugate addidon. In either case, 13 results in which the active site of the enzyme is alkylated and unable to continue processing substrate. The net result is a downturn in the synthesis of cellular polyamine production and a decrease in growth rate. Eflornithine is described as being useful in the treatment of benign prostatic hyperplasia, as an antiprotozoal or an antineoplastic substance [3,4]. [Pg.3]

Flowever, information concerning the characteristics of these systems under the conditions of a continuous process is still very limited. From a practical point of view, the concept of ionic liquid multiphasic catalysis can be applicable only if the resultant catalytic lifetimes and the elution losses of catalytic components into the organic or extractant layer containing products are within commercially acceptable ranges. To illustrate these points, two examples of applications mn on continuous pilot operation are described (i) biphasic dimerization of olefins catalyzed by nickel complexes in chloroaluminates, and (ii) biphasic alkylation of aromatic hydrocarbons with olefins and light olefin alkylation with isobutane, catalyzed by acidic chloroaluminates. [Pg.271]

The Houdry fixed-bed cyclic units were soon displaced in the 1940s by the superior Fluid Catalytic Cracking process pioneered by Warren K. Lewis of MIT and Eger Murphree and his team of engineers at Standard Oil of Newjersey (now Exxon). Murphree and his team demonstrated that hundreds of tons of fine catalyst could be continuously moved like a fluid between the cracking reactor and a separate vessel for... [Pg.632]

Stirred-slurry reactors are of considerable industrial importance in batch-wise processing. The catalytic hydrogenation of fats and fatty acids is an example of a process that is carried out almost exclusively in mechanically stirred slurry reactors. The operation is of less significance with respect to continuous processing. [Pg.120]

Industrially, the perfluoroalkyl iodides by telomerization are mostly made by a batch system using peroxide initiators. However, the difficulty of mass production, and the production of hydrogen-containing byproducts in the process are disadvantageous [4]. In this study, a continuous process for the preparation of perfluoroalkyl iodides over nanosized metal catalysts in gas phase and the effects of the particle size on the catalytic activities of different the preparation methods and active metals were considered. [Pg.301]

In the sixties of past century, a few patents issued to Bergbau Chemie [5,48,49] and to Mobil Oil [50-52], respectively described the use of CFPs as supports for catalytically active metal nanoclusters and as carriers for heterogenized metal complexes of catalytic relevance. For the latter catalysts the term hybrid phase catalysts later came into use [53,54], At that time coordination chemistry and organo-transition metal chemistry were in full development. Homogeneous transition metal catalysis was expected to grow in industrial relevance [54], but catalyst separation was generally a major problem for continuous processing. That is why the concept of hybrid catalysis became very popular in a short time [55]. [Pg.208]

The time scale of deactivation has profound consequences for process design. This is easiest illustrated for continuous processes by plotting the catalytic activity as a function of the time-on-stream. Qualitatively, often the type of behaviour shown in Fig. 3.34 is observed. [Pg.87]

Batch continuous processing, in which part of the catalytic solution is removed to a low pressure distillation unit, on the other hand, has recently been commercialised [2-4]. Very little information is available in the public domain concerning this low pressure distillation process, but the main extra cost will be in generating the reduced pressure required for the distillation. The estimated vapour pressures at 110°C of various long chain linear aldehyde products that are commercially desirable are shown in Figure 9.1. This temperature has been chosen because this is the high temperature limit above which the rhodium triphenylphosphine complex starts to decompose. Any commercial process will require to operate the product distillation step at a pressure no higher than those shown for the individual aldehydes. [Pg.238]

None of the alternative strategies for catalyst/product separation has yet reached the point where it can be commercialised for the rhodium catalysed hydroformyation of long chain alkenes and there are very few examples of commercialisation in any catalytic applications. Batch continuous processing with low pressure product distillation has been commercialised but the complexity of the system suggests that alternatives may be able to compete. [Pg.247]

Fluid Hydroforming An early catalytic reforming process in which the catalyst was used in a continuously regenerated fluidized bed. Developed by the MW Kellogg Company. [Pg.109]

Hon (Informing A continuous catalytic reforming process for producing aromatic concentrates and high-octane gasoline. It used a fixed bed of a platinum catalyst. Developed in the 1950s by the Houdiy Process Corporation. [Pg.132]

For continuous processes the catalytic reactor, or a hybrid process if satisfactory chemical dosing equipment is already installed, appear to be a near-optimum solution still for many installations. At moderate hypochlorite concentrations, economic benefit does accrue from using the catalyst in-loop rather than end-of-pipe, but these benefits may be offset by any required investment in heat-exchange capability. At concentrations above 10 wt% the integration of decomposition into the scrubbing process is beneficial to the overall cost base of hypochlorite treatment. [Pg.345]

In the past, the majority of high-pressure homogeneous catalytic reactions were conducted in batch systems, which may cause problems in scale-up for SCFs because of the higher pressures needed for achieving the supercritical state. Therefore, continuous processing has also been investigated in the last years. It would be preferable for industrial-scale SCF reactions, because it involves smaller and, hence, safer equipment [144-150]. In addition, capital costs are likely to be lower than in batch systems. [Pg.129]

In a munber of publications we have recently demonstrated that this problem of mass transport hmitation can be circumvented by using catalytic SILP materials [27-32]. Moreover, these catalysts allow the application of fixed-bed reactors for simple continuous processing when applied in combination with gaseous reaction mixtures making the separation and catalyst recychng obsolete. [Pg.151]

Amination. A continuous process in which aliphatic and aromatic amines are produced by (1) high pressure, catalytic hydrogenation of nitro compounds (-NO2 or nitriles (-CN)) and (2) action of ammonia on a chloro- or hydroxy-compound. [Pg.390]


See other pages where Catalytic continuous processes is mentioned: [Pg.411]    [Pg.526]    [Pg.411]    [Pg.526]    [Pg.355]    [Pg.204]    [Pg.260]    [Pg.261]    [Pg.93]    [Pg.266]    [Pg.548]    [Pg.680]    [Pg.961]    [Pg.196]    [Pg.204]    [Pg.42]    [Pg.279]    [Pg.288]    [Pg.298]    [Pg.272]    [Pg.89]    [Pg.118]    [Pg.159]    [Pg.474]    [Pg.232]    [Pg.572]    [Pg.215]    [Pg.235]    [Pg.359]    [Pg.334]    [Pg.24]    [Pg.169]   
See also in sourсe #XX -- [ Pg.411 ]




SEARCH



Catalytic dehydrogenation continuous processes

Catalytic processes

Continuous processes

Continuous processing

Heterogeneous catalytic processes continuous-flow reactor

Hydrogenation continuous catalytic process

© 2024 chempedia.info