Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electro catalysis

Apart from the study of physicochemical aspects such as ion solvation, and bio-mimetic aspects such as photosynthesis or carrier-mediated ion transfer (Volkov et al., 1996, 1998), there are several areas of potential applications of electrochemical IBTILE measurements comprising electroanalysis, lipophilicity assessment of drugs, phase transfer catalysis, electro-assisted extraction, and electrocatalysis. [Pg.618]

AmphiphiUc block copolymers self-assemble into a variety of supramolecular structures that can be used as templates for the preparation of nanoparticles and mesoporous materials. Size and shape of nanoparticles and mesopores can be controlled via block lengths and polymer concentration. Templates can be used for the preparation of noble metals, semiconductors, and ceramic nanostructures. Concepts of consecutive and hierarchical templating allow one to prepare complex nanostructures for applications in catalysis, electro-optics, and particle separation. [Pg.1]

The subjects of catalytic science include catalysis (cataljAic phenomena and principle) catalyst (composition, structure, performance and manufacturing method and principle) catalytic reaction kinetics (chemical kinetics and mechanism) as well as cataljAic reaction engineering (apparent kinetics inclucing transport process and reaction process and reactor design) etc. The main tasks of catalytic science are to elucidate the nature of catalytic active sites, the function of catalyst and reaction mechanism to explore the main factors influencing activity, selectivity and stabihty of catalyst to accumulate acknowledge for the exploitation and development of chemical catalysis and to open up its relatively new disciplines — bionic catalysis, photo catalysis, electro catalysis and photoelectric catalysis — to indicate... [Pg.67]

The recent development of structurally controlled dendrimers has led to the development of a wide range of new functional macromolecules. These dendrimers were first applied in the fields of chemistry, including catalysis, pharmacology, and materials science [23-26]. More recently there have been several reports of dendrimers having electro active, photoactive, and recognition elements [27-34]. Important applications in photonics have recently been exploited, though the number of reports is still limited. [Pg.207]

Together with its central aspect, of studying the activity of catalysts in electrochemical reactions as a function of the nature and state of the catalyst, the term electro-catalysis is sometimes used as well to describe other areas of interest ... [Pg.551]

The valence band structure of very small metal crystallites is expected to differ from that of an infinite crystal for a number of reasons (a) with a ratio of surface to bulk atoms approaching unity (ca. 2 nm diameter), the potential seen by the nearly free valence electrons will be very different from the periodic potential of an infinite crystal (b) surface states, if they exist, would be expected to dominate the electronic density of states (DOS) (c) the electronic DOS of very small metal crystallites on a support surface will be affected by the metal-support interactions. It is essential to determine at what crystallite size (or number of atoms per crystallite) the electronic density of sates begins to depart from that of the infinite crystal, as the material state of the catalyst particle can affect changes in the surface thermodynamics which may control the catalysis and electro-catalysis of heterogeneous reactions as well as the physical properties of the catalyst particle [26]. [Pg.78]

Koper MTM, van Santen RA, Neurock M. 2003. Theory and modeling of catalytic and electro-catalytic reactions. In Savinova ER, Vayenas CG, Wieckowski A, eds. Catalysis and Electrocatalysis at Nanoparticle Surfaces. New York Marcel Dekker. pp. 1-34. [Pg.157]

Another metal that has attracted interest for use as electrode material is rhodium, inspired by its high activity in the catalytic oxidation of CO in automotive catalysis. It is found that Rh is a far less active catalyst for the ethanol electro-oxidation reaction than Pt [de Souza et al., 2002 Leung et al., 1989]. Similar to ethanol oxidation on Pt, the main reactions products were CO2, acetaldehyde, and acetic acid. Rh, however, presents a significant better CO2 yield relative to the C2 compounds than Pt, indicating a... [Pg.195]

Watanabe M, Motoo S. 1975. Electro catalysis by ad-atoms. Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium adatoms. J Electroanal Chem 60 275. [Pg.506]

In addition, it sustains CO electro-oxidation at relatively low overpotential, and there are crystal face dependences for both the ORR and CO oxidation. Since Au is also a system that exhibits both particle size and support effects in heterogeneous catalysis, it provides an interesting model system for smdying such effects in electrocatalysis. [Pg.570]

The finding that thiamine, and even simple thiazolium ring derivatives, can perform many reactions in the absence of the host apoenzyme has allowed detailed analyses of its chemistry [33, 34]. In 1958 Breslow first proposed a mechanism for thiamine catalysis to this day, this mechanism remains as the generally accepted model [35]. NMR deuterium exchange experiments were enlisted to show that the thiazolium C2-proton of thiamine was exchangeable, suggesting that a carbanion zwitterion could be formed at that center. This nucleophilic carbanion was proposed to interact with sites in the substrates. The thiazolium thus acts as an electron sink to stabilize a carbonyl carbanion generated by deprotonation of an aldehydic carbon or decarboxylation of an a-keto acid. The nucleophilic carbonyl equivalent could then react with other electro-... [Pg.17]

Colloidal crysfals can be viewed as the mesoscopic counterpart of atomic or molecular crystals. They have been used to explore diverse phenomena such as crystal growth [52-54] and glass transition [55,56], and have many interesting applications for sensors [57], in catalysis [58,59], advanced coatings [60], and for optical/electro-optical devices for information processing and storage [61,62]. In particular, their unusual optical properties, namely the diffraction of visible light and the existence of a photonic stop band, make them ideal candidates for the development of photonic materials [61,63-66]. They may lead to the fabrication... [Pg.214]

The nature of antibody catalysis remains to be elucidated, and antibodies will not reach the efficiency of enzymes until they can emulate the conformational changes, acid/base, redox, and/or nucleophilic/electro-philic reactivities of catalytic residues along the entire reaction coordinate. It is worthy of note that Hollfelder et al recently demonstrated that serum albumins catalyze the eliminative ring-opening of a benzoisoxazole at rates that are similar to those observed with catalytic antibodies. They suggest that formal general base catalysis contributes only modestly to the efficiency of both systems, and they favor the view that the antibody catalysis may be enhanced in some cases by nonspecific medium effects. [Pg.115]

JCS(P1)3I5]. On the other hand, acid catalysis, which enhances electro-philicity of the pivotal carbon, is generally observed. [Pg.123]

Better established is their use as photocatalysts, in the photoelectro-catalytic production of H2 or the elimination of pollutants, and in developing advanced electrodes for fuel cells, particularly for direct methanol or ethanol oxidation. Nevertheless, also in this case the field can be still considered to be at an earlier stage. It has been shown how several of the results have to be further demonstrated, and issues and limits better defined. However, there are clear indications that this will be a major area of research not only for this specific field, but in general for all catalysis. The recent US DoE report Catalysis for Energy also indicates that the development of better tailored nanostructures for photo- and electro-catalytic applications, particularly for better use of renewable resources, is one of the priority areas of research in catalysis and in general of science. [Pg.118]

Mechanism of Hydrocarbon Synthesis over Fischer Tropsch Catalysts P. Biloen and W. M. H. Sachtler Surface Reactions and Selectivity in Electro-catalysis... [Pg.515]

The formation of boundary layers at the surface interface between semiconductor and gas influences also the luminescence and the electro-optical qualities of semiconductors. These effects offer interesting possibilities for studying experimentally the mechanism of chemisorption, the stationary state of chemisorption, and electron defects in the catalyst during catalysis. Experiments along this line have been carried out by some investigators (40,41) who have studied in a qualitative way the factors influencing the oxidation of phenols catalyzed by zinc oxide under the influence of light. Further work on this subject is desirable. [Pg.230]

The electrochemical allylation of carbonyl compounds by electroreductivc regeneration of a diallyltin reagent from allyl bromide and a Sn species leads to formation of homoallylic alcohols in yields of 70-90 % even in methanol or methanol/water (Table 7, No. 12) Bisaryl formation is possible also from aryl iodides or bromides in the presence of electro-generated Pd phosphane complexes (Table 7, No. 13) In the presence of styrenes, 1,3-butadienes, or phenyl acetylene the products of ArH addition are formed in this way (Table 7, No. 14) . The electroreductivc cleavage of allylic acetates is also possible by catalysis of an Pd°-complex (Table K No. 15)... [Pg.42]

Two years ago, Advances in Catalysis featured a chapter on chemisorbed intermediates in electrocatalysis. In this issue we follow up with a chapter by Wendt, Rausch, and Borucinski, Advances in Applied Electrocatalysis. The successful commercial application of electrocatalysis requires a detailed, fundamental knowledge of the many catalytic phenomena such as adsorption, diffusion, and superimposition of catalyst micro- and nanostructure on the special requirements of electrode behavior. Considerable understanding of the status and limitations of electrolysis, fuel cells, and electro-organic syntheses has been obtained and provides a sound basis for future developments. [Pg.294]

Several broad themes recur frequently in enzymatic reaction mechanisms. Among the most important of these are (1) proximity effects, (2) general-acid and general-base catalysis, (3) electrostatic effects, (4) nucleophilic or electro-philic catalysis by enzymatic functional groups, and... [Pg.154]

Metal-containing polymers, in which the metal is coordinated to the polymer chain, are interesting from the standpoint that the conjugated backbone can help stabilize redox activity, affording a continuum of accessible states. The very nature of these materials suggests an array of potential uses (e.g., electro-catalysis, electrochromic displays, and molecular recognition). There are many ex-... [Pg.111]

Without being itself a screening device, the reactor of Jensen et al. [6, 42, 43] also has to be mentioned because they opened up a completely new field in catalysis by combining MEMS (micro-electro-mechanical systems) technology with a chip-based catalytic reactor (Fig. 4.10). A mixing-tee was equipped with heaters and temperature and flow sensors, thus giving on-stream information about the reaction conditions. [Pg.96]


See other pages where Electro catalysis is mentioned: [Pg.68]    [Pg.508]    [Pg.513]    [Pg.581]    [Pg.683]    [Pg.706]    [Pg.68]    [Pg.1217]    [Pg.147]    [Pg.268]    [Pg.6]    [Pg.378]    [Pg.123]    [Pg.80]    [Pg.237]    [Pg.89]    [Pg.94]    [Pg.558]    [Pg.465]    [Pg.176]    [Pg.108]    [Pg.168]    [Pg.86]    [Pg.332]    [Pg.246]    [Pg.4]    [Pg.95]    [Pg.442]    [Pg.53]   


SEARCH



© 2024 chempedia.info