Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Method of Manufacture

The preferred starting material for the industrial synthesis of isoindoline pigments is diiminoisoindoline (10a) or its tautomeric form aminoiminoisoindoline (10b), which can be produced from o-phthalodinitrile (9) and gaseous ammonia in ethylene glycol or other suitable solvents [4a]. Suitable starting materials further include 1,1-dialk-oxy-3-iminoisoindolines, synthesized from 9 and C1-C4 alcohols [4bj. [Pg.226]

10 easily condenses with appropriate active methylene compounds Uke cyano-acetamides or heterocycUc cyanomethyl compounds to give a monocondensation product 11 which can be used as starting material for the synthesis of asymmetrical isoindohnes. The second condensation is carried out at elevated temperature, with the addition of acids. [Pg.227]

In the case of barbituric acid and its derivatives it is not possible under standard conditions to isolate a monocondensation product. Because of the high reactivity of barbituric acid, even at a 1 1 ratio, the bismethine (P.Y. 139) and unreacted 10 are isolated. So whenever an asymmetrical pigment contains a barbituric acid moiety this building block is incorporated in the second step. [Pg.227]

As initially obtained, the pigment is in an unsatisfactory physical, or crade form. It is crystallized therefore in aqueous suspension in a finishing process to develop the required physical properties such as crystal shape and size, crystal phase and particle size distribution. This determines important application properties Uke hue, color strength, rheological behavior, hiding power, transparency and Ught and weather fasmess. [Pg.227]

In the case of P.Y. 139, the temperature, surfactant level and other parameters may be varied to obtain fine (Paliotol Yellow L 1820), medium size (PaUotol Yellow L 1970) and coarse products (Paliotol Yellow L 2140 HD) by selectively adjusting advanced finishing procedures and conditions. [Pg.227]


The different methods of manufacturing sulphuric acid are essentially the same in principle and consist of three distinct processes ... [Pg.296]

Production and Shipment. Estimated adiponitrile production capacities in the U.S. in 1992 were about 625 thousand metric tons and worldwide capacity was in excess of lO metric tons. The DOT/IMO classification for adiponitrile is class 6.1 hazard, UN No. 2205. It requires a POISON label on all containers and is in packing group III. Approved materials of constmction for shipping, storage, and associated transportation equipment are carbon steel and type 316 stainless steel. Either centrifugal or positive displacement pumps may be used. Carbon dioxide or chemical-foam fire extinguishers should be used. There are no specifications for commercial adiponitrile. The typical composition is 99.5 wt % adiponitrile. Impurities that may be present depend on the method of manufacture, and thus, vary depending on the source. [Pg.221]

The above batch process has undergone numerous refinements to improve yields, processing characteristics, purity, and storage stabiUty, but it remains the standard method of manufacture for these products. Recentiy a continuous process has been reported by Bayer AG (6) wherein the condensation is carried out in an extmder. The by-products are removed in a degassing zone, and the molten polymer, mixed with stabilizers, is subsequendy cracked to yield raw monomer. [Pg.178]

In addition, there are other methods of manufacture of cryoHte from low fluorine value sources, eg, the effluent gases from phosphate plants or from low grade fluorspar. In the former case, making use of the fluorosiHcic acid, the siHca is separated by precipitation with ammonia, and the ammonium fluoride solution is added to a solution of sodium sulfate and aluminum sulfate at 60—90°C to precipitate cryoHte (26,27) ... [Pg.144]

In some cases, particularly with iaactive metals, electrolytic cells are the primary method of manufacture of the fluoroborate solution. The manufacture of Sn, Pb, Cu, and Ni fluoroborates by electrolytic dissolution (87,88) is patented. A typical cell for continous production consists of a polyethylene-lined tank with tin anodes at the bottom and a mercury pool (ia a porous basket) cathode near the top (88). Pluoroboric acid is added to the cell and electrolysis is begun. As tin fluoroborate is generated, differences ia specific gravity cause the product to layer at the bottom of the cell. When the desired concentration is reached ia this layer, the heavy solution is drawn from the bottom and fresh HBP is added to the top of the cell continuously. The direct reaction of tin with HBP is slow but can be accelerated by passiag air or oxygen through the solution (89). The stannic fluoroborate is reduced by reaction with mossy tin under an iaert atmosphere. In earlier procedures, HBP reacted with hydrated stannous oxide. [Pg.168]

The nomenclature of cellular polymers is not standardized classifications have been made according to the properties of the base polymer (22), the methods of manufacture, the cellular stmcture, or some combination of these. The most comprehensive classification of cellular plastics, proposed in 1958 (23), has not been adopted and is not consistent with some of the common names for the more important commercial products. [Pg.403]

Hydrazine [302-01-2] (diamide), N2H4, a colorless liquid having an ammoniacal odor, is the simplest diamine and unique in its class because of the N—N bond. It was first prepared in 1887 by Curtius as the sulfate salt from diazoacetic ester. Thiele (1893) suggested that the oxidation of ammonia (qv) with hypochlorite should yield hydrazine and in 1906 Raschig demonstrated this process, variations of which constitute the chief commercial methods of manufacture in the 1990s. [Pg.273]

Acid-cataly2ed hydroxylation of naphthalene with 90% hydrogen peroxide gives either 1-naphthol or 2-naphthiol at a 98% yield, depending on the acidity of the system and the solvent used. In anhydrous hydrogen fluoride or 70% HF—30% pyridine solution at — 10 to + 20°C, 1-naphthol is the product formed in > 98% selectivity. In contrast, 2-naphthol is obtained in hydroxylation in super acid (HF—BF, HF—SbF, HF—TaF, FSO H—SbF ) solution at — 60 to — 78°C in > 98% selectivity (57). Of the three commercial methods of manufacture, the pressure hydrolysis of 1-naphthaleneamine with aqueous sulfuric acid at 180°C has been abandoned, at least in the United States. The caustic fusion of sodium 1-naphthalenesulfonate with 50 wt % aqueous sodium hydroxide at ca 290°C followed by the neutralization gives 1-naphthalenol in a ca 90% yield. [Pg.497]

Another method of manufacture involves the oxidation of 2-isopropylnaphthalene ia the presence of a few percent of 2-isopropylnaphthalene hydroperoxide/i)ti< 2-22-(y as the initiator, some alkaU, and perhaps a transition-metal catalyst, with oxygen or air at ca 90—100°C, to ca 20—40% conversion to the hydroperoxide the oxidation product is cleaved, using a small amount of ca 50 wt % sulfuric acid as the catalyst at ca 60°C to give 2-naphthalenol and acetone in high yield (70). The yields of both 2-naphthalenol and acetone from the hydroperoxide are 90% or better. [Pg.498]

Properties. Anhydrous aluminum chloride is a hygroscopic, white soHd that reacts with moisture ia air. Properties are shown ia Table 1. Commercial grades vary ia color from light yellow to light gray as a result of impurities. Crystal size is dependent upon method of manufacture. At atmospheric pressure, anhydrous aluminum chloride sublimes at 180°C as the dimer [13845-12-0] Al2Qg, which dissociates to the monomer beginning at... [Pg.146]

An interesting biochemical method of manufacture is the utili2ation of bioengineered Fseudomonad 2isrmA (16) or Pseudomonas stut ri (17) in a culture medium to oxidi2e naphthalene or alkyl-substituted naphthalene. The metabohc oxidation products, unsubstituted or substituted sahcyhc acid. [Pg.286]

The uses of steel are too diverse to be Hsted completely or to serve as a basis of classification. Inasmuch as grades of steel are produced by more than one process, classification by method of manufacture is not advantageous. The most useful classification is by chemical composition into the large groups of carbon steels, alloy steels, and stainless steels. Within these groups are many subdivisions based on chemical composition, physical or mechanical properties, or uses. [Pg.373]

Prepa.ra.tlon, Diorganotin dichlorides are the usual precursors for all other diorganotin compounds three primary methods of manufacture are practiced. Dibutyltin dichloride is manufactured by Kocheshkov redistribution from cmde tetrabutyltin and stannic chloride and usually is cataly2ed with a few tenths of a percent aluminum trichloride ... [Pg.72]

Composition and Methods of Manufacture. The diseases of diphtheria and tetanus are caused by toxHis synthesized by the organisms CoTynebacterium diphtheriae and Clostridium tetanic respectively. Diphtheria and tetanus vacciaes coataHi purified toxHis that have beea iaactivated by formaldehyde to form toxoids. [Pg.357]

Composition and Methods of Manufacture. Vaccine is produced from the Oka attenuated strain. Vacciae is produced in human diploid cells such as MRC-5. After growth in the cell substrate, the cells themselves are harvested into the growth medium and sonicated to release the cell-associated vims. Sucrose and buffering salts are generally in the medium to help stabiLize the vims. The vacciae is presented in a free2e-dried vial to be reconstituted with sterile distilled water before injection (27). [Pg.358]

Composition and Methods of Manufacture. Two types of influen2a vimses, A and B, are responsible for causing periodic outbreaks of febrile respiratory disease. The manufacture of an effective vaccine is compHcated by antigenic variation or drift, which can occur from year to year within the two vims types, making the previous year s vaccine less effective. Each year, antigenic characteri2ation is important for selecting the vims strains to be included in the vaccine. [Pg.358]

Composition and Methods of Manufacture. The vaccine consists of a mixture of purified capsular polysaccharides from 23 pneumococcal types that are responsible for over 90% of the serious pneumococcal disease in the world (47,48). Each of the polysaccharide types is produced separately and treated to remove impurities. The latter is commonly achieved by alcohol fractionation, centrifugation, treatment with cationic detergents, proteolytic en2ymes, nucleases or activated charcoal, diafiltration, and lyophili2ation (49,50). The vaccine contains 25 micrograms of each of the types of polysaccharide and a preservative such as phenol or thimerosal. [Pg.358]

Processes that are essentially modifications of laboratory methods and that allow operation on a larger scale are used for commercial preparation of vinyhdene chloride polymers. The intended use dictates the polymer characteristics and, to some extent, the method of manufacture. Emulsion polymerization and suspension polymerization are the preferred industrial processes. Either process is carried out in a closed, stirred reactor, which should be glass-lined and jacketed for heating and cooling. The reactor must be purged of oxygen, and the water and monomer must be free of metallic impurities to prevent an adverse effect on the thermal stabiUty of the polymer. [Pg.438]

Pure PEA possesses an extremely mild roselike odor. Commercial grades of PEA which are >99% pure vary in odor because of the impurities present which depend on the method of manufacture. The common impurities are benzaldehyde [100-52-7], benzylacetone [2550-26-7],... [Pg.61]

Another method of manufacturing SiC by the decomposition of a gas mixture containing silane, propane, and hydrogen, and hydrogen chloride has been described (80). With such a mixture, it was possible to work at a relatively lower (1200°C) temperature and it was claimed that compact, homogeneous P SiC crystals were obtained. In a variation of this gas-phase synthesis theme, SiC has been produced from the reaction of SiCl and methane (81). SiC precipitates from 1000 to 3000°C. [Pg.466]

Significant quantities of ethyl chloride are also produced as a by-product of the catalytic hydrochlorination over a copper chloride catalyst, of ethylene and hydrogen chloride to produce 1,2-dichloroethane, which is used as feedstock in the manufacture of vinyl choride (see Vinyl polymers). This ethyl chloride can be recovered for sale or it can be concentrated and catalyticaHy cracked back to ethylene and hydrogen chloride (25). As the market for ethyl chloride declines, recovery as an intermediate by-product of vinyl chloride manufacture may become a predominant method of manufacture of ethyl chloride. [Pg.2]

Cocoa butter substitutes and equivalents differ greatly with respect to their method of manufacture, source of fats, and functionaHty they are produced by several physical and chemical processes (17,18). Cocoa butter substitutes are produced from lauric acid fats such as coconut, palm, and palm kernel oils by fractionation and hydrogenation from domestic fats such as soy, com, and cotton seed oils by selective hydrogenation or from palm kernel stearines by fractionation. Cocoa butter equivalents can be produced from palm kernel oil and other specialty fats such as shea and ilHpe by fractional crystallization from glycerol and selected fatty acids by direct chemical synthesis or from edible beef tallow by acetone crystallization. [Pg.93]

MiscelDneous. Other important properties are resistance to thermal shock, attack by slag, and, in the case of refractories (qv), thermal expansion. For whiteware, translucency, acceptance of glazes, etc, may be extremely important. These properties depend on the clay mineral composition, the method of manufacture and impurity content. [Pg.205]

Properties are furthermore determined by the nature of the organic acid, the type of metal and its concentration, the presence of solvent and additives, and the method of manufacture. Higher melting points are characteristics of soaps made of high molecular-weight, straight-chain, saturated fatty acids. Branched-chain unsaturated fatty acids form soaps with lower melting points. Table 1 Hsts the properties of some soHd metal soaps. [Pg.217]


See other pages where Method of Manufacture is mentioned: [Pg.15]    [Pg.258]    [Pg.267]    [Pg.378]    [Pg.403]    [Pg.206]    [Pg.284]    [Pg.313]    [Pg.301]    [Pg.496]    [Pg.505]    [Pg.305]    [Pg.27]    [Pg.248]    [Pg.46]    [Pg.357]    [Pg.357]    [Pg.357]    [Pg.358]    [Pg.90]    [Pg.372]    [Pg.527]    [Pg.265]    [Pg.519]    [Pg.452]    [Pg.106]    [Pg.107]   


SEARCH



Manufacturing and Processing Methods of Biocomposites

Manufacturing methods of surface-modified

Manufacturing methods of surface-modified silica sols

Method of Pigment Manufacture

Method of manufactured solutions

Method of manufacturing

Method of manufacturing

Methods for the manufacture of chemical fibers

Methods in the Manufacture of Chlorine

Some Other Methods of Manufacturing Inhibited Films

The continuous method of lead azide manufacture (according to Meissner)

Two-stage manufacture of TNT (old Italian method)

© 2024 chempedia.info